Suppr超能文献

基于超声信号的机器学习对压电陶瓷微损伤进行分类。

Classification of Micro-Damage in Piezoelectric Ceramics Using Machine Learning of Ultrasound Signals.

机构信息

Department of Electronics Engineering, Indian Institute of Technology, Delhi 110001, India.

Department of Physics and Technology, UiT The Arctic University of Norway, 9037 Tromsø, Norway.

出版信息

Sensors (Basel). 2019 Sep 28;19(19):4216. doi: 10.3390/s19194216.

Abstract

Ultrasound based structural health monitoring of piezoelectric material is challenging if a damage changes at a microscale over time. Classifying geometrically similar damages with a difference in diameter as small as 100 μ m is difficult using conventional sensing and signal analysis approaches. Here, we use an unconventional ultrasound sensing approach that collects information of the entire bulk of the material and investigate the applicability of machine learning approaches for classifying such similar defects. Our results show that appropriate feature design combined with simple k-nearest neighbor classifier can provide up to 98% classification accuracy even though conventional features for time-series data and a variety of classifiers cannot achieve close to 70% accuracy. The newly proposed hybrid feature, which combines frequency domain information in the form of power spectral density and time domain information in the form of sign of slope change, is a suitable feature for achieving the best classification accuracy on this challenging problem.

摘要

如果损伤随时间在微观尺度上发生变化,基于超声的压电材料结构健康监测将极具挑战性。使用传统的传感和信号分析方法,很难对直径相差仅 100μm 的几何相似损伤进行分类。在这里,我们使用一种非常规的超声传感方法来收集整个材料的信息,并研究机器学习方法在分类此类相似缺陷方面的适用性。我们的结果表明,适当的特征设计与简单的 K-最近邻分类器相结合,即使对于传统的时间序列数据特征和各种分类器,也可以提供高达 98%的分类准确率,无法达到近 70%的准确率。新提出的混合特征,结合了频域信息(以功率谱密度的形式)和时域信息(以斜率变化符号的形式),是解决这一具有挑战性问题的最佳分类准确性的合适特征。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/22a3/6806247/673f4f134e63/sensors-19-04216-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验