Sensing System Research Center , National Institute of Advanced Industrial Science and Technology (AIST) , Tsukuba Central 5, 1-1-1 Higashi , Tsukuba , Ibaraki 305-8565 , Japan.
Graduate School of Engineering , Hiroshima University , 1-4-1, Kagamiyama , Higashi-hiroshima , Hiroshima 739-8527 , Japan.
ACS Appl Mater Interfaces. 2019 Oct 30;11(43):40602-40612. doi: 10.1021/acsami.9b13467. Epub 2019 Oct 15.
Thin-film layers of nanoparticles exhibit mechanical fragility that depends on their interactions. Balancing the cohesive force of particles with their interfacial adhesion to a substrate enables the selective transfer of micrometer-scale layer features. Here, the versatility of this adhesion-based transfer approach from poly(dimethylsiloxane) (PDMS) is presented by demonstrating micropatterns of various functional nanoparticulate materials, including Ag, Cu, indium tin oxide, poly(3,4-ethylenedioxythiophene) polystyrene sulfonate, and dielectric silica. With the attachment of the Johnson-Kendall-Roberts interaction to a simple strain model of particle layers during the patterning process, the patterning criteria for successful printing at both macroscale and nanoscale levels are deduced. Discrete element modeling analysis was used to validate the scaling laws and to highlight the fracture modes of particle layers during the patterning process. In particular, the balance among cohesive forces in the tensile direction and in the shear direction and the adhesion force at the layer-PDMS interface mainly regulates the patterning quality of adhesion patterning.
薄膜层的纳米粒子表现出机械脆性,这取决于它们的相互作用。平衡粒子的内聚力与其与基底的界面附着力,使微米级层特征的选择性转移成为可能。这里,通过展示各种功能纳米颗粒材料的微图案,包括 Ag、Cu、氧化铟锡、聚(3,4-乙撑二氧噻吩)聚苯乙烯磺酸盐和介电二氧化硅,展示了这种基于附着力的转移方法的多功能性。在图案形成过程中,将 Johnson-Kendall-Roberts 相互作用附加到粒子层的简单应变模型上,推导出了在宏观和纳米尺度上成功打印的图案形成标准。离散元建模分析用于验证标度律,并突出图案形成过程中粒子层的断裂模式。特别是,在拉伸方向和剪切方向上的内聚力以及层-PDMS 界面处的附着力之间的平衡主要调节了附着力图案形成的图案形成质量。