Cotruvo Joseph A
Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States.
ACS Cent Sci. 2019 Sep 25;5(9):1496-1506. doi: 10.1021/acscentsci.9b00642. Epub 2019 Aug 22.
The essential biological role of rare earth elements lay hidden until the discovery in 2011 that lanthanides are specifically incorporated into a bacterial methanol dehydrogenase. Only recently has this observation gone from a curiosity to a major research area, with the appreciation for the widespread nature of lanthanide-utilizing organisms in the environment and the discovery of other lanthanide-binding proteins and systems for selective uptake. While seemingly exotic at first glance, biological utilization of lanthanides is very logical from a chemical perspective. The early lanthanides (La, Ce, Pr, Nd) primarily used by biology are abundant in the environment, perform similar chemistry to other biologically useful metals and do so more efficiently due to higher Lewis acidity, and possess sufficiently distinct coordination chemistry to allow for selective uptake, trafficking, and incorporation into enzymes. Indeed, recent advances in the field illustrate clear analogies with the biological coordination chemistry of other metals, particularly Ca and Fe, but with unique twists-including cooperative metal binding to magnify the effects of small ionic radius differences-enabling selectivity. This Outlook summarizes the recent developments in this young but rapidly expanding field and looks forward to potential future discoveries, emphasizing continuity with principles of bioinorganic chemistry established by studies of other metals. We also highlight how a more thorough understanding of the central chemical question-selective lanthanide recognition in biology-may impact the challenging problems of sensing, capture, recycling, and separations of rare earths.
稀土元素的基本生物学作用一直隐藏着,直到2011年发现镧系元素被特异性地整合到细菌甲醇脱氢酶中。直到最近,随着对环境中利用镧系元素的生物体的广泛存在的认识以及其他镧系元素结合蛋白和选择性摄取系统的发现,这一观察结果才从一个奇闻变成了一个主要的研究领域。虽然乍一看似乎很奇特,但从化学角度来看,镧系元素的生物利用是非常合乎逻辑的。生物学主要使用的早期镧系元素(镧、铈、镨、钕)在环境中含量丰富,其化学性质与其他对生物有用的金属相似,并且由于更高的路易斯酸度而能更有效地发挥作用,同时拥有足够独特的配位化学性质,以实现选择性摄取、运输并整合到酶中。事实上,该领域的最新进展表明,它与其他金属尤其是钙和铁的生物配位化学有明显的相似之处,但也有独特之处,包括协同金属结合以放大小离子半径差异的影响,从而实现选择性。本展望总结了这个年轻但迅速发展的领域的最新进展,并展望了未来可能的发现,强调了与通过其他金属研究确立的生物无机化学原理的连续性。我们还强调,对核心化学问题——生物学中镧系元素的选择性识别——的更深入理解可能会影响稀土传感、捕获、回收和分离等具有挑战性的问题。