Suppr超能文献

用于饱和与不饱和两性离子脂质分子动力学模拟的德鲁德可极化力场

Drude Polarizable Force Field for Molecular Dynamics Simulations of Saturated and Unsaturated Zwitterionic Lipids.

作者信息

Li Hui, Chowdhary Janamejaya, Huang Lei, He Xibing, MacKerell Alexander D, Roux Benoît

机构信息

Department of Biochemistry and Molecular Biology, Gordon Center for Integrative Science, University of Chicago , Chicago, Illinois 60637, United States.

Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore , Baltimore, Maryland 21201, United States.

出版信息

J Chem Theory Comput. 2017 Sep 12;13(9):4535-4552. doi: 10.1021/acs.jctc.7b00262. Epub 2017 Aug 8.

Abstract

Additive force fields are designed to account for induced electronic polarization in a mean-field average way, using effective empirical fixed charges. The limitation of this approximation is cause for serious concerns, particularly in the case of lipid membranes, where the molecular environment undergoes dramatic variations over microscopic length scales. A polarizable force field based on the classical Drude oscillator offers a practical and computationally efficient framework for an improved representation of electrostatic interactions in molecular simulations. Building on the first-generation Drude polarizable force field for the dipalmitoylphosphatidylcholine 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) molecule, the present effort was undertaken to improve this initial model and expand the force field to a wider range of phospholipid molecules. New lipids parametrized include dimyristoylphosphatidylcholine (DMPC), dilauroylphosphatidylcholine (DLPC), 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), dipalmitoylphosphatidylethanolamine (DPPE), 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (POPE), and 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE). The iterative optimization protocol employed in this effort led to lipid models that achieve a good balance between reproducing quantum mechanical data on model compound representative of phospholipids and reproducing a range of experimental condensed phase properties of bilayers. A parametrization strategy based on a restrained ensemble-maximum entropy methodology was used to help accurately match the experimental NMR order parameters in the polar headgroup region. All the parameters were developed to be compatible with the remainder of the Drude polarizable force field, which includes water, ions, proteins, DNA, and selected carbohydrates.

摘要

加和力场旨在通过使用有效的经验固定电荷,以平均场平均的方式解释诱导电子极化。这种近似方法的局限性引发了严重担忧,特别是在脂质膜的情况下,其中分子环境在微观长度尺度上会发生显著变化。基于经典德鲁德振子的可极化力场为分子模拟中静电相互作用的改进表示提供了一个实用且计算高效的框架。在第一代用于二棕榈酰磷脂酰胆碱1,2 - 二棕榈酰 - sn - 甘油 - 3 - 磷酸胆碱(DPPC)分子的德鲁德可极化力场的基础上,开展了当前的工作,以改进这个初始模型,并将力场扩展到更广泛的磷脂分子范围。新参数化的脂质包括二肉豆蔻酰磷脂酰胆碱(DMPC)、二月桂酰磷脂酰胆碱(DLPC)、1 - 棕榈酰 - 2 - 油酰 - sn - 甘油 - 3 - 磷酸胆碱(POPC)、1,2 - 二油酰 - sn - 甘油 - 3 - 磷酸胆碱(DOPC)、二棕榈酰磷脂酰乙醇胺(DPPE)、1 - 棕榈酰 - 2 - 油酰 - sn - 甘油 - 3 - 磷酸乙醇胺(POPE)和1,2 - 二油酰 - sn - 甘油 - 3 - 磷酸乙醇胺(DOPE)。在此工作中采用的迭代优化协议产生了脂质模型,这些模型在重现代表磷脂的模型化合物的量子力学数据与重现双层膜的一系列实验凝聚相性质之间实现了良好的平衡。基于受限系综 - 最大熵方法的参数化策略被用于帮助准确匹配极性头基团区域的实验NMR序参数。所有参数的开发都与德鲁德可极化力场的其余部分兼容,该力场包括水、离子、蛋白质、DNA和选定的碳水化合物。

相似文献

1
Drude Polarizable Force Field for Molecular Dynamics Simulations of Saturated and Unsaturated Zwitterionic Lipids.
J Chem Theory Comput. 2017 Sep 12;13(9):4535-4552. doi: 10.1021/acs.jctc.7b00262. Epub 2017 Aug 8.
2
Update of the CHARMM all-atom additive force field for lipids: validation on six lipid types.
J Phys Chem B. 2010 Jun 17;114(23):7830-43. doi: 10.1021/jp101759q.
3
6
Improvement of Parameters of the AMBER Potential Force Field for Phospholipids for Description of Thermal Phase Transitions.
J Phys Chem B. 2015 Jul 30;119(30):9726-39. doi: 10.1021/acs.jpcb.5b01656. Epub 2015 Jul 10.
7
Evaluation of membrane models and their composition for islet amyloid polypeptide-membrane aggregation.
Biochim Biophys Acta. 2013 Sep;1828(9):2091-8. doi: 10.1016/j.bbamem.2013.05.014. Epub 2013 May 23.
9
Calcein release behavior from liposomal bilayer; influence of physicochemical/mechanical/structural properties of lipids.
Biochimie. 2013 Nov;95(11):2018-33. doi: 10.1016/j.biochi.2013.07.006. Epub 2013 Jul 16.
10
Understanding the Mechanical Properties of Ultradeformable Liposomes Using Molecular Dynamics Simulations.
J Phys Chem B. 2023 Nov 9;127(44):9496-9512. doi: 10.1021/acs.jpcb.3c04386. Epub 2023 Oct 25.

引用本文的文献

1
Structural and Electronic Properties of Poly(ethylene terephthalate) (PET) from Polarizable Molecular Dynamics Simulations.
Macromolecules. 2024 Nov 8;58(1):403-414. doi: 10.1021/acs.macromol.4c02109. eCollection 2025 Jan 14.
2
CHARMM at 45: Enhancements in Accessibility, Functionality, and Speed.
J Phys Chem B. 2024 Oct 17;128(41):9976-10042. doi: 10.1021/acs.jpcb.4c04100. Epub 2024 Sep 20.
3
Statistical Mechanical Theories of Membrane Permeability.
J Phys Chem B. 2024 Sep 26;128(38):9183-9196. doi: 10.1021/acs.jpcb.4c05020. Epub 2024 Sep 16.
4
Effective Inclusion of Electronic Polarization Improves the Description of Electrostatic Interactions: The prosECCo75 Biomolecular Force Field.
J Chem Theory Comput. 2024 Sep 10;20(17):7546-7559. doi: 10.1021/acs.jctc.4c00743. Epub 2024 Aug 26.
5
Quantifying Induced Dipole Effects in Small Molecule Permeation in a Model Phospholipid Bilayer.
J Phys Chem B. 2024 Aug 1;128(30):7385-7400. doi: 10.1021/acs.jpcb.4c01634. Epub 2024 Jul 22.
6
Evaluating Polarizable Biomembrane Simulations against Experiments.
J Chem Theory Comput. 2024 May 28;20(10):4325-4337. doi: 10.1021/acs.jctc.3c01333. Epub 2024 May 8.
7
How is Membrane Permeation of Small Ionizable Molecules Affected by Protonation Kinetics?
J Phys Chem B. 2024 Jan 25;128(3):795-811. doi: 10.1021/acs.jpcb.3c06765. Epub 2024 Jan 16.
9
Charged Small Molecule Binding to Membranes in MD Simulations Evaluated against NMR Experiments.
J Phys Chem B. 2022 Sep 15;126(36):6955-6963. doi: 10.1021/acs.jpcb.2c05024. Epub 2022 Sep 5.
10
Extension of the CHARMM Classical Drude Polarizable Force Field to N- and O-Linked Glycopeptides and Glycoproteins.
J Phys Chem B. 2022 Sep 8;126(35):6642-6653. doi: 10.1021/acs.jpcb.2c04245. Epub 2022 Aug 25.

本文引用的文献

2
Lipid and Peptide Diffusion in Bilayers: The Saffman-Delbrück Model and Periodic Boundary Conditions.
J Phys Chem B. 2017 Apr 20;121(15):3443-3457. doi: 10.1021/acs.jpcb.6b09111. Epub 2017 Jan 6.
3
An Empirical Polarizable Force Field Based on the Classical Drude Oscillator Model: Development History and Recent Applications.
Chem Rev. 2016 May 11;116(9):4983-5013. doi: 10.1021/acs.chemrev.5b00505. Epub 2016 Jan 27.
4
Atomistic resolution structure and dynamics of lipid bilayers in simulations and experiments.
Biochim Biophys Acta. 2016 Oct;1858(10):2512-2528. doi: 10.1016/j.bbamem.2016.01.019. Epub 2016 Jan 22.
6
Lipid Bilayers: The Effect of Force Field on Ordering and Dynamics.
J Chem Theory Comput. 2012 Nov 13;8(11):4807-17. doi: 10.1021/ct300675z. Epub 2012 Oct 18.
7
An Extension and Further Validation of an All-Atomistic Force Field for Biological Membranes.
J Chem Theory Comput. 2012 Aug 14;8(8):2938-48. doi: 10.1021/ct300342n. Epub 2012 Jul 10.
8
Mechanical properties of lipid bilayers from molecular dynamics simulation.
Chem Phys Lipids. 2015 Nov;192:60-74. doi: 10.1016/j.chemphyslip.2015.07.014. Epub 2015 Jul 31.
9
CHARMM Drude Polarizable Force Field for Aldopentofuranoses and Methyl-aldopentofuranosides.
J Phys Chem B. 2015 Jun 25;119(25):7846-59. doi: 10.1021/acs.jpcb.5b01767. Epub 2015 Jun 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验