Li Hui, Chowdhary Janamejaya, Huang Lei, He Xibing, MacKerell Alexander D, Roux Benoît
Department of Biochemistry and Molecular Biology, Gordon Center for Integrative Science, University of Chicago , Chicago, Illinois 60637, United States.
Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore , Baltimore, Maryland 21201, United States.
J Chem Theory Comput. 2017 Sep 12;13(9):4535-4552. doi: 10.1021/acs.jctc.7b00262. Epub 2017 Aug 8.
Additive force fields are designed to account for induced electronic polarization in a mean-field average way, using effective empirical fixed charges. The limitation of this approximation is cause for serious concerns, particularly in the case of lipid membranes, where the molecular environment undergoes dramatic variations over microscopic length scales. A polarizable force field based on the classical Drude oscillator offers a practical and computationally efficient framework for an improved representation of electrostatic interactions in molecular simulations. Building on the first-generation Drude polarizable force field for the dipalmitoylphosphatidylcholine 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) molecule, the present effort was undertaken to improve this initial model and expand the force field to a wider range of phospholipid molecules. New lipids parametrized include dimyristoylphosphatidylcholine (DMPC), dilauroylphosphatidylcholine (DLPC), 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), dipalmitoylphosphatidylethanolamine (DPPE), 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (POPE), and 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE). The iterative optimization protocol employed in this effort led to lipid models that achieve a good balance between reproducing quantum mechanical data on model compound representative of phospholipids and reproducing a range of experimental condensed phase properties of bilayers. A parametrization strategy based on a restrained ensemble-maximum entropy methodology was used to help accurately match the experimental NMR order parameters in the polar headgroup region. All the parameters were developed to be compatible with the remainder of the Drude polarizable force field, which includes water, ions, proteins, DNA, and selected carbohydrates.
加和力场旨在通过使用有效的经验固定电荷,以平均场平均的方式解释诱导电子极化。这种近似方法的局限性引发了严重担忧,特别是在脂质膜的情况下,其中分子环境在微观长度尺度上会发生显著变化。基于经典德鲁德振子的可极化力场为分子模拟中静电相互作用的改进表示提供了一个实用且计算高效的框架。在第一代用于二棕榈酰磷脂酰胆碱1,2 - 二棕榈酰 - sn - 甘油 - 3 - 磷酸胆碱(DPPC)分子的德鲁德可极化力场的基础上,开展了当前的工作,以改进这个初始模型,并将力场扩展到更广泛的磷脂分子范围。新参数化的脂质包括二肉豆蔻酰磷脂酰胆碱(DMPC)、二月桂酰磷脂酰胆碱(DLPC)、1 - 棕榈酰 - 2 - 油酰 - sn - 甘油 - 3 - 磷酸胆碱(POPC)、1,2 - 二油酰 - sn - 甘油 - 3 - 磷酸胆碱(DOPC)、二棕榈酰磷脂酰乙醇胺(DPPE)、1 - 棕榈酰 - 2 - 油酰 - sn - 甘油 - 3 - 磷酸乙醇胺(POPE)和1,2 - 二油酰 - sn - 甘油 - 3 - 磷酸乙醇胺(DOPE)。在此工作中采用的迭代优化协议产生了脂质模型,这些模型在重现代表磷脂的模型化合物的量子力学数据与重现双层膜的一系列实验凝聚相性质之间实现了良好的平衡。基于受限系综 - 最大熵方法的参数化策略被用于帮助准确匹配极性头基团区域的实验NMR序参数。所有参数的开发都与德鲁德可极化力场的其余部分兼容,该力场包括水、离子、蛋白质、DNA和选定的碳水化合物。