Suppr超能文献

一维量子接触过程的临界行为。

Critical Behavior of the Quantum Contact Process in One Dimension.

机构信息

School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD, United Kingdom.

Centre for the Mathematics and Theoretical Physics of Quantum Non-Equilibrium Systems, University of Nottingham, Nottingham NG7 2RD, United Kingdom.

出版信息

Phys Rev Lett. 2019 Sep 6;123(10):100604. doi: 10.1103/PhysRevLett.123.100604.

Abstract

The contact process is a paradigmatic classical stochastic system displaying critical behavior even in one dimension. It features a nonequilibrium phase transition into an absorbing state that has been widely investigated and shown to belong to the directed percolation universality class. When the same process is considered in a quantum setting, much less is known. So far, mainly semiclassical studies have been conducted and the nature of the transition in low dimensions is still a matter of debate. Also, from a numerical point of view, from which the system may look fairly simple-especially in one dimension-results are lacking. In particular, the presence of the absorbing state poses a substantial challenge, which appears to affect the reliability of algorithms targeting directly the steady state. Here we perform real-time numerical simulations of the open dynamics of the quantum contact process and shed light on the existence and on the nature of an absorbing state phase transition in one dimension. We find evidence for the transition being continuous and provide first estimates for the critical exponents. Beyond the conceptual interest, the simplicity of the quantum contact process makes it an ideal benchmark problem for scrutinizing numerical methods for open quantum nonequilibrium systems.

摘要

接触过程是一个典型的经典随机系统,即使在一维空间中也表现出临界行为。它具有非平衡相变到吸收态的特征,这已经得到了广泛的研究,并被证明属于定向渗流的普遍性类别。当同样的过程在量子环境中被考虑时,人们了解得就少得多了。到目前为止,主要进行了半经典研究,低维相变的性质仍然存在争议。此外,从数值角度来看,从系统可能看起来相当简单的角度来看——特别是在一维空间中——结果是缺乏的。在这里,我们对量子接触过程的开放动力学进行了实时数值模拟,揭示了一维吸收态相变的存在和性质。我们发现了连续过渡的证据,并提供了临界指数的初步估计。除了概念上的兴趣之外,量子接触过程的简单性使其成为一个理想的基准问题,可以仔细研究用于开放量子非平衡系统的数值方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验