Suppr超能文献

传染病的增长与格里菲斯效应在激发态原子的新兴网络中的作用。

Epidemic growth and Griffiths effects on an emergent network of excited atoms.

机构信息

Physikalisches Institut, Universität Heidelberg, 69120, Heidelberg, Germany.

ISIS (UMR 7006), University of Strasbourg and CNRS, 67000, Strasbourg, France.

出版信息

Nat Commun. 2021 Jan 4;12(1):103. doi: 10.1038/s41467-020-20333-7.

Abstract

Whether it be physical, biological or social processes, complex systems exhibit dynamics that are exceedingly difficult to understand or predict from underlying principles. Here we report a striking correspondence between the excitation dynamics of a laser driven gas of Rydberg atoms and the spreading of diseases, which in turn opens up a controllable platform for studying non-equilibrium dynamics on complex networks. The competition between facilitated excitation and spontaneous decay results in sub-exponential growth of the excitation number, which is empirically observed in real epidemics. Based on this we develop a quantitative microscopic susceptible-infected-susceptible model which links the growth and final excitation density to the dynamics of an emergent heterogeneous network and rare active region effects associated to an extended Griffiths phase. This provides physical insights into the nature of non-equilibrium criticality in driven many-body systems and the mechanisms leading to non-universal power-laws in the dynamics of complex systems.

摘要

无论是物理、生物还是社会过程,复杂系统都表现出极其难以理解或根据基本原理进行预测的动态。在这里,我们报告了激光驱动的里德堡原子气体的激发动力学与疾病传播之间惊人的一致性,这反过来又为研究复杂网络上的非平衡动力学开辟了一个可控的平台。促进激发和自发衰减之间的竞争导致激发数的亚指数增长,这在实际的传染病中得到了经验观察。基于这一点,我们开发了一个定量的微观易感染-易感染-易感染模型,将增长和最终激发密度与新兴异质网络的动力学以及与扩展的格里菲斯阶段相关的稀有活跃区域效应联系起来。这为驱动多体系统中非平衡临界的本质以及导致复杂系统动力学中非普适幂律的机制提供了物理见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6c04/7782709/6dd1fa4dcbea/41467_2020_20333_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验