Hunan Key Laboratory for Micro-Nano Energy Materials and Devices, Hunan, People's Republic of China.
Nanoscale. 2019 Oct 10;11(39):18358-18366. doi: 10.1039/c9nr04551a.
We investigate the topological properties of the Janus superlattices WTeS and WTeSe by first-principles methods and Wannier-based tight-binding Hamiltonians. The thermal stability of the Janus structures is checked by first-principles molecular dynamics. The topological properties are identified through node chirality, surface states and surface Fermi arcs. Our calculations reveal that both WTeS and WTeSe are Type-I Weyl semimetals with only four Weyl nodes in the Brillouin zone, which is a minimal number in a time reversal symmetry system. This small number of Weyl nodes makes them an excellent platform to study their topological properties experimentally. The Weyl nodes are located in four different quadrants of the Brillouin zone and consequently the separation of Weyl points in reciprocal space, and the length of Fermi arc, is of the order of the magnitude of the reciprocal lattice vector |Gz| as might be easily observed in experiment. The Weyl nodes have approximately the same energy below the Fermi level and are hence accessible by conventional ARPES. In addition, under external strain, the Weyl semimetal state is more robust than the sister compounds Td-WTe2/MoTe2. Our findings are important to explore Weyl fermion physics and useful for realizing possible applications of Weyl semimetal materials in future topological electronic devices.
我们通过第一性原理方法和基于 Wanier 的紧束缚哈密顿量研究了 Janus 超晶格 WTeS 和 WTeSe 的拓扑性质。通过第一性原理分子动力学检查 Janus 结构的热稳定性。通过节点手性、表面态和表面费米弧来确定拓扑性质。我们的计算表明,WTeS 和 WTeSe 都是具有 I 型 Weyl 半金属的材料,在布里渊区中只有四个 Weyl 节点,这在时间反演对称系统中是最小数量。Weyl 节点的数量较少,使它们成为实验研究其拓扑性质的理想平台。Weyl 节点位于布里渊区的四个不同象限,因此在倒空间中 Weyl 点的分离以及费米弧的长度,与倒格矢 |Gz| 的量级相当,这在实验中很容易观察到。在费米能级以下,Weyl 节点的能量大致相同,因此可以通过常规 ARPES 进行探测。此外,在外加应变下,Weyl 半金属态比姐妹化合物 Td-WTe2/MoTe2 更稳定。我们的研究结果对于探索 Weyl 费米子物理具有重要意义,并有助于实现 Weyl 半金属材料在未来拓扑电子器件中的潜在应用。