CIC nanoGUNE , 20018 Donostia-San Sebastián , Spain.
IKERBASQUE , Basque Foundation for Science , 48013 Bilbao , Spain.
Nano Lett. 2019 Nov 13;19(11):8066-8073. doi: 10.1021/acs.nanolett.9b03257. Epub 2019 Oct 8.
Infrared nanospectroscopy based on Fourier transform infrared near-field spectroscopy (nano-FTIR) is an emerging nanoanalytical tool with large application potential for label-free mapping and identification of organic and inorganic materials with nanoscale spatial resolution. However, the detection of thin molecular layers and nanostructures on standard substrates is still challenged by weak signals. Here, we demonstrate a significant enhancement of nano-FTIR signals of a thin organic layer by exploiting polariton-resonant tip-substrate coupling and surface polariton illumination of the probing tip. When the molecular vibration matches the tip-substrate resonance, we achieve up to nearly one order of magnitude signal enhancement on a phonon-polaritonic quartz (c-SiO) substrate, as compared to nano-FTIR spectra obtained on metal (Au) substrates, and up to two orders of magnitude when compared to the standard infrared spectroscopy substrate CaF. Our results will be of critical importance for boosting nano-FTIR spectroscopy toward the routine detection of monolayers and single molecules.
基于傅里叶变换近场红外光谱(nano-FTIR)的红外纳米光谱学是一种新兴的纳米分析工具,具有很大的应用潜力,可用于对具有纳米级空间分辨率的有机和无机材料进行无标记的测绘和识别。然而,在标准衬底上检测薄的分子层和纳米结构仍然受到弱信号的挑战。在这里,我们通过利用极化激元共振尖端-衬底耦合和探针的表面极化激元照明,显著增强了薄有机层的 nano-FTIR 信号。当分子振动与尖端-衬底共振匹配时,与在金属(Au)衬底上获得的 nano-FTIR 光谱相比,我们在声子极化激元石英(c-SiO)衬底上实现了高达近一个数量级的信号增强,而与标准红外光谱衬底 CaF 相比,则实现了高达两个数量级的信号增强。我们的结果对于推动 nano-FTIR 光谱学朝着常规检测单层和单分子的方向发展具有至关重要的意义。