Lu Yi-Hsien, Larson Jonathan M, Baskin Artem, Zhao Xiao, Ashby Paul D, Prendergast David, Bechtel Hans A, Kostecki Robert, Salmeron Miquel
Department of Materials Science and Engineering , University of California at Berkeley , Berkeley , California 94720 , United States.
Advanced Light Source , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States.
Nano Lett. 2019 Aug 14;19(8):5388-5393. doi: 10.1021/acs.nanolett.9b01897. Epub 2019 Jul 22.
We present a new methodology that enables studies of the molecular structure of graphene-liquid interfaces with nanoscale spatial resolution. It is based on Fourier transform infrared nanospectroscopy (nano-FTIR), where the infrared (IR) field is plasmonically enhanced near the tip apex of an atomic force microscope (AFM). The graphene seals a liquid electrolyte reservoir while acting also as a working electrode. The photon transparency of graphene enables IR spectroscopy studies of its interface with liquids, including water, propylene carbonate, and aqueous ammonium sulfate electrolyte solutions. We illustrate the method by comparing IR spectra obtained by nano-FTIR and attenuated total reflection (which has a detection depth of a few microns) demonstrating that the nano-FTIR method makes it possible to determine changes in speciation and ion concentration in the electric double and diffuse layers as a function of bias.
我们提出了一种新方法,该方法能够以纳米级空间分辨率研究石墨烯 - 液体界面的分子结构。它基于傅里叶变换红外纳米光谱(nano - FTIR),其中红外(IR)场在原子力显微镜(AFM)的针尖附近通过等离子体增强。石墨烯密封了液体电解质储存器,同时还充当工作电极。石墨烯的光子透明性使得能够对其与包括水、碳酸丙烯酯和硫酸铵水溶液电解质溶液在内的液体的界面进行红外光谱研究。我们通过比较nano - FTIR和衰减全反射(检测深度为几微米)获得的红外光谱来说明该方法,证明nano - FTIR方法能够确定双电层和扩散层中物种形成和离子浓度随偏压的变化。