The Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.
Integrated Physiology and Molecular Metabolism, Pennington Biomedical Research Center, Baton Rouge, LA, USA.
Free Radic Biol Med. 2019 Dec;145:284-299. doi: 10.1016/j.freeradbiomed.2019.09.031. Epub 2019 Sep 28.
Protein synthesis and autophagy are regulated by cellular ATP content. We tested the hypothesis that mitochondrial dysfunction, including generation of reactive oxygen species (ROS), contributes to impaired protein synthesis and increased proteolysis resulting in tissue atrophy in a comprehensive array of models. In myotubes treated with ethanol, using unbiased approaches, we identified defects in mitochondrial electron transport chain components, endogenous antioxidants, and enzymes regulating the tricarboxylic acid (TCA) cycle. Using high sensitivity respirometry, we observed impaired cellular respiration, decreased function of complexes I, II, and IV, and a reduction in oxidative phosphorylation in ethanol-treated myotubes and muscle from ethanol-fed mice. These perturbations resulted in lower skeletal muscle ATP content and redox ratio (NAD/NADH). Ethanol also caused a leak of electrons, primarily from complex III, with generation of mitochondrial ROS and reverse electron transport. Oxidant stress with lipid peroxidation (thiobarbituric acid reactive substances) and protein oxidation (carbonylated proteins) were increased in myotubes and skeletal muscle from mice and humans with alcoholic liver disease. Ethanol also impaired succinate oxidation in the TCA cycle with decreased metabolic intermediates. MitoTEMPO, a mitochondrial specific antioxidant, reversed ethanol-induced mitochondrial perturbations (including reduced oxygen consumption, generation of ROS and oxidative stress), increased TCA cycle intermediates, and reversed impaired protein synthesis and the sarcopenic phenotype. We show that ethanol causes skeletal muscle mitochondrial dysfunction, decreased protein synthesis, and increased autophagy, and that these perturbations are reversed by targeting mitochondrial ROS.
蛋白质合成和自噬受细胞内 ATP 含量的调节。我们通过一系列综合模型来验证这样一个假设,即线粒体功能障碍(包括活性氧的产生)会导致蛋白质合成受损和蛋白水解增加,从而导致组织萎缩。在使用乙醇处理的肌管中,我们采用无偏方法鉴定出线粒体电子传递链成分、内源性抗氧化剂和调节三羧酸(TCA)循环的酶的缺陷。通过高灵敏度呼吸计,我们观察到乙醇处理的肌管和乙醇喂养的小鼠肌肉中的细胞呼吸受损,复合物 I、II 和 IV 的功能下降,氧化磷酸化减少。这些干扰导致骨骼肌 ATP 含量和氧化还原比(NAD/NADH)降低。乙醇还导致电子从复合物 III 主要泄漏,产生线粒体 ROS 和逆向电子传递。在患有酒精性肝病的小鼠和人类的肌管和骨骼肌中,氧化应激导致脂质过氧化(硫代巴比妥酸反应物质)和蛋白氧化(羰基化蛋白)增加。乙醇还损害 TCA 循环中的琥珀酸氧化,代谢中间产物减少。线粒体特异性抗氧化剂 MitoTEMPO 逆转了乙醇引起的线粒体扰动(包括耗氧量减少、ROS 生成和氧化应激),增加了 TCA 循环中间产物,并逆转了蛋白质合成受损和肌肉减少症表型。我们表明,乙醇导致骨骼肌线粒体功能障碍、蛋白质合成减少和自噬增加,而这些干扰通过靶向线粒体 ROS 可以得到逆转。