Welch Nicole, Kannan Pugazhendhi, Mishra Saurabh, Bellar Annette, Agrawal Vandana, Kidd Grahame, Benson Emily, Musich Ryan, Tabbalat Raya, Li Ling, Brown J Mark, Willard Belinda, Esser Karyn A, Nagy Laura E, Dasarathy Srinivasan
Departments of Gastroenterology and Hepatology, Cleveland Clinic, Lerner Research Institute, Cleveland, Ohio, USA.
Departments of Inflammation and Immunity, Cleveland Clinic, Lerner Research Institute, Cleveland, Ohio, USA.
J Cachexia Sarcopenia Muscle. 2025 Jun;16(3):e13818. doi: 10.1002/jcsm.13818.
Skeletal muscle is a major target for ethanol-induced perturbations, leading to sarcopenia in alcohol-related liver disease (ALD). The complex interactions and pathways involved in adaptive and maladaptive responses to ethanol in skeletal muscle are not well understood. Unlike hypothesis-driven experiments, an integrated multiomics-experimental validation approach provides a comprehensive view of these interactions.
We performed multiomics analyses with experimental validation to identify novel regulatory mechanisms of sarcopenia in ALD. Studies were done in a comprehensive array of models including ethanol-treated (ET) murine and human-induced pluripotent stem cell-derived myotubes (hiPSCm), skeletal muscle from a mouse model of ALD (mALD) and human patients with alcohol-related cirrhosis and controls. We generated 13 untargeted datasets, including chromatin accessibility (assay for transposase accessible chromatin), RNA sequencing, proteomics, phosphoproteomics, acetylomics and metabolomics, and conducted integrated multiomics analyses using UpSet plots and feature extraction. Key findings were validated using immunoblots, redox measurements (NAD/NADH ratio), imaging and senescence-associated molecular phenotype (SAMP) assays. Mechanistic studies included mitochondrial-targeted Lactobacillus brevis NADH oxidase (MitoLbNOX) to increase redox ratio and MitoTempo as a mitochondrial free radical scavenger.
Multiomics analyses revealed enrichment in mitochondrial oxidative function, protein synthesis and senescence pathways consistent with the known effects of hypoxia-inducible factor 1α (HIF1α) during normoxia. Across preclinical and clinical models, HIF1α targets (n = 32 genes) and signalling genes (n > 100 genes) (n = 3 ATACseq, n = 65 phosphoproteomics, n = 10 acetylomics, n = 6 C2C12 proteomics, n = 106 C2C12 RNAseq, n = 64 hiPSC RNAseq, n = 30 hiPSC proteomics, n = 3 mouse proteomics, n = 25 mouse RNAseq, n = 8 human RNAseq, n = 3 human proteomics) were increased. Stabilization of HIF1α (C2C12, 6hEtOH 0.24 ± 0.09; p = 0.043; mALD 0.32 ± 0.074; p = 0.005; data shown as mean difference ± standard error mean) was accompanied by enrichment in the early transient and late change clusters, -log(p-value) = 1.5-3.8, of the HIF1α signalling pathway. Redox ratio was reduced in ET myotubes (C2C12: 15512 ± 872.1, p < 0.001) and mALD muscle, with decreased expression of electron transport chain components (CI-V, p < 0.05) and Sirt3 (C2C12: 0.067 ± 0.023, p = 0.025; mALD: 0.41 ± 0.12, p = 0.013). Acetylation of mitochondrial proteins was increased in both models (C2C12: 107364 ± 4558, p = 0.03; mALD: 40036 ± 18 987, p = 0.049). Ethanol-induced SAMP was observed across models (P16: C2C12: 0.2845 ± 0.1145, p < 0.05; hiPSCm: 0.2591, p = 0.041). MitoLbNOX treatment reversed redox imbalance, HIF1α stabilization, global acetylation and myostatin expression (p < 0.05).
An integrated multiomics approach, combined with experimental validation, identifies HIF1α stabilization and accelerated post-mitotic senescence as novel mechanisms of sarcopenia in ALD. These findings show the complex molecular interactions leading to mitochondrial dysfunction and progressive sarcopenia in ALD.
骨骼肌是乙醇诱导的扰动的主要靶点,导致酒精性肝病(ALD)中的肌肉减少症。骨骼肌对乙醇的适应性和适应不良反应所涉及的复杂相互作用和途径尚未完全了解。与假设驱动的实验不同,综合多组学实验验证方法能全面了解这些相互作用。
我们通过实验验证进行多组学分析,以确定ALD中肌肉减少症的新调控机制。研究在一系列综合模型中进行,包括乙醇处理(ET)的小鼠和人诱导多能干细胞衍生的肌管(hiPSCm)、ALD小鼠模型(mALD)的骨骼肌以及酒精性肝硬化患者和对照的骨骼肌。我们生成了13个非靶向数据集,包括染色质可及性(转座酶可及染色质分析)、RNA测序、蛋白质组学、磷酸蛋白质组学、乙酰化蛋白质组学和代谢组学,并使用UpSet图和特征提取进行综合多组学分析。关键发现通过免疫印迹、氧化还原测量(NAD/NADH比值)、成像和衰老相关分子表型(SAMP)分析进行验证。机制研究包括线粒体靶向的短乳杆菌NADH氧化酶(MitoLbNOX)以增加氧化还原比值,以及MitoTempo作为线粒体自由基清除剂。
多组学分析显示线粒体氧化功能、蛋白质合成和衰老途径富集,与常氧下缺氧诱导因子1α(HIF1α)的已知作用一致。在临床前和临床模型中,HIF1α靶点(n = 32个基因)和信号基因(n > 100个基因)(n = 3个ATACseq,n = 65个磷酸蛋白质组学,n = 10个乙酰化蛋白质组学,n = 6个C2C12蛋白质组学,n = 106个C2C12 RNA测序,n = 64个hiPSC RNA测序,n = 30个hiPSC蛋白质组学,n = 3个小鼠蛋白质组学,n = 25个小鼠RNA测序,n = 8个人类RNA测序,n = 3个人类蛋白质组学)均增加。HIF1α的稳定化(C2C12,6小时乙醇处理0.24±0.09;p = 0.043;mALD 0.32±0.074;p = 0.005;数据表示为平均差异±标准误均值)伴随着HIF1α信号通路早期瞬时和晚期变化簇的富集,-log(p值)= 1.5 - 3.8。ET肌管(C2C12:15512±872.1,p < 0.001)和mALD肌肉中的氧化还原比值降低,电子传递链成分(CI - V,p < 0.05)和Sirt3(C2C12:0.067±0.023,p = 0.025;mALD:0.41±0.12,p = 0.013)的表达减少。两种模型中线粒体蛋白的乙酰化均增加(C2C12:107364±4558,p = 0.03;mALD:40036±18987,p = 0.049)。在各模型中均观察到乙醇诱导的SAMP(P16:C2C12:0.2845±0.1145,p < 0.05;hiPSCm:0.2591,p = 0.041)。MitoLbNOX处理可逆转氧化还原失衡、HIF1α稳定化、整体乙酰化和肌肉生长抑制素表达(p < 0.05)。
综合多组学方法与实验验证相结合,确定HIF1α稳定化和有丝分裂后加速衰老为ALD中肌肉减少症的新机制。这些发现揭示了导致ALD中线粒体功能障碍和进行性肌肉减少症的复杂分子相互作用。