Max-Planck-Institut für Mathematik in den Naturwissenschaften, Inselstraße 22, 04103 Leipzig, Germany.
Santa Fe Institute for the Sciences of Complexity, Santa Fe, New Mexico 87501, USA.
Phys Rev E. 2019 Aug;100(2-1):022313. doi: 10.1103/PhysRevE.100.022313.
We consider a two-layer multiplex network of diffusively coupled FitzHugh-Nagumo (FHN) neurons in the excitable regime. We show that the phenomenon of coherence resonance (CR) in one layer can not only be controlled by the network topology, the intra- and interlayer time-delayed couplings, but also by another phenomenon, namely, self-induced stochastic resonance (SISR) in the other layer. Numerical computations show that when the layers are isolated, each of these noise-induced phenomena is weakened (strengthened) by a sparser (denser) ring network topology, stronger (weaker) intralayer coupling forces, and longer (shorter) intralayer time delays. However, CR shows a much higher sensitivity than SISR to changes in these control parameters. It is also shown, in contrast to SISR in a single isolated FHN neuron, that the maximum noise amplitude at which SISR occurs in the network of coupled FHN neurons is controllable, especially in the regime of strong coupling forces and long time delays. In order to use SISR in the first layer of the multiplex network to control CR in the second layer, we first choose the control parameters of the second layer in isolation such that in one case CR is poor and in another case, nonexistent. It is then shown that a pronounced SISR can not only significantly improve a poor CR, but can also induce a pronounced CR, which was nonexistent in the isolated second layer. In contrast to strong intralayer coupling forces, strong interlayer coupling forces are found to enhance CR, while long interlayer time delays, just as long intralayer time delays, deteriorate CR. Most importantly, we find that in a strong interlayer coupling regime, SISR in the first layer performs better than CR in enhancing CR in the second layer. But in a weak interlayer coupling regime, CR in the first layer performs better than SISR in enhancing CR in the second layer. Our results could find novel applications in noisy neural network dynamics and engineering.
我们考虑了兴奋状态下两层扩散耦合 FitzHugh-Nagumo(FHN)神经元的双层复发性网络。我们表明,一个层中的相干共振(CR)现象不仅可以通过网络拓扑、层内和层间时滞耦合来控制,还可以通过另一个现象来控制,即另一个层中的自诱导随机共振(SISR)。数值计算表明,当两层相互隔离时,这些噪声诱导现象中的每一个都被稀疏(密集)的环网络拓扑、较强(较弱)的层内耦合力和较长(较短)的层内时滞削弱(增强)。然而,与单个孤立的 FHN 神经元中的 SISR 相比,CR 对这些控制参数的变化更为敏感。与耦合 FHN 神经元网络中的 SISR 相比,还表明,在网络中发生 SISR 的最大噪声幅度是可控的,尤其是在强耦合力和长时滞的情况下。为了在复发性网络的第一层使用 SISR 来控制第二层的 CR,我们首先在孤立的情况下选择第二层的控制参数,使得在一种情况下 CR 很差,而在另一种情况下则不存在。然后表明,明显的 SISR 不仅可以显著改善较差的 CR,还可以诱导在孤立的第二层中不存在的明显 CR。与较强的层内耦合力相反,较强的层间耦合力增强 CR,而较长的层间时滞,就像较长的层内时滞一样,会降低 CR。最重要的是,我们发现,在较强的层间耦合状态下,第一层中的 SISR 比第二层中的 CR 增强效果更好。但在较弱的层间耦合状态下,第一层中的 CR 比第二层中的 SISR 增强效果更好。我们的结果可以在噪声神经网络动力学和工程中找到新的应用。