Suppr超能文献

层间连接性影响兴奋性和抑制性神经元双层网络中的相干共振和群体活动模式。

Interlayer Connectivity Affects the Coherence Resonance and Population Activity Patterns in Two-Layered Networks of Excitatory and Inhibitory Neurons.

作者信息

Ristič David, Gosak Marko

机构信息

Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor, Slovenia.

Faculty of Medicine, University of Maribor, Maribor, Slovenia.

出版信息

Front Comput Neurosci. 2022 Apr 18;16:885720. doi: 10.3389/fncom.2022.885720. eCollection 2022.

Abstract

The firing patterns of neuronal populations often exhibit emergent collective oscillations, which can display substantial regularity even though the dynamics of individual elements is very stochastic. One of the many phenomena that is often studied in this context is coherence resonance, where additional noise leads to improved regularity of spiking activity in neurons. In this work, we investigate how the coherence resonance phenomenon manifests itself in populations of excitatory and inhibitory neurons. In our simulations, we use the coupled FitzHugh-Nagumo oscillators in the excitable regime and in the presence of neuronal noise. Formally, our model is based on the concept of a two-layered network, where one layer contains inhibitory neurons, the other excitatory neurons, and the interlayer connections represent heterotypic interactions. The neuronal activity is simulated in realistic coupling schemes in which neurons within each layer are connected with undirected connections, whereas neurons of different types are connected with directed interlayer connections. In this setting, we investigate how different neurophysiological determinants affect the coherence resonance. Specifically, we focus on the proportion of inhibitory neurons, the proportion of excitatory interlayer axons, and the architecture of interlayer connections between inhibitory and excitatory neurons. Our results reveal that the regularity of simulated neural activity can be increased by a stronger damping of the excitatory layer. This can be accomplished with a higher proportion of inhibitory neurons, a higher fraction of inhibitory interlayer axons, a stronger coupling between inhibitory axons, or by a heterogeneous configuration of interlayer connections. Our approach of modeling multilayered neuronal networks in combination with stochastic dynamics offers a novel perspective on how the neural architecture can affect neural information processing and provide possible applications in designing networks of artificial neural circuits to optimize their function noise-induced phenomena.

摘要

神经元群体的放电模式通常表现出涌现的集体振荡,即使单个元件的动力学非常随机,这种振荡也能显示出相当的规律性。在这种背景下经常研究的众多现象之一是相干共振,其中额外的噪声会导致神经元放电活动的规律性得到改善。在这项工作中,我们研究相干共振现象在兴奋性和抑制性神经元群体中是如何表现的。在我们的模拟中,我们在可兴奋状态下且存在神经元噪声的情况下使用耦合的 FitzHugh-Nagumo 振荡器。形式上,我们的模型基于两层网络的概念,其中一层包含抑制性神经元,另一层包含兴奋性神经元,层间连接代表异型相互作用。神经元活动是在现实的耦合方案中模拟的,其中每层内的神经元通过无向连接相连,而不同类型的神经元通过有向层间连接相连。在这种设置下,我们研究不同的神经生理学决定因素如何影响相干共振。具体而言,我们关注抑制性神经元的比例、兴奋性层间轴突的比例以及抑制性和兴奋性神经元之间的层间连接结构。我们的结果表明,通过对兴奋性层进行更强的阻尼可以提高模拟神经活动的规律性。这可以通过更高比例的抑制性神经元、更高比例的抑制性层间轴突、抑制性轴突之间更强的耦合或通过层间连接的异质配置来实现。我们结合随机动力学对多层神经元网络进行建模的方法,为神经结构如何影响神经信息处理提供了一个新的视角,并为设计人工神经电路网络以优化其功能噪声诱导现象提供了可能的应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/37ab/9062746/04883c0bf0ab/fncom-16-885720-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验