Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv 69978, Israel.
Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
Phys Rev E. 2019 Aug;100(2-1):022125. doi: 10.1103/PhysRevE.100.022125.
How does removal of sites by a random walk lead to blockage of percolation? To study this problem of correlated site percolation, we consider a random walk (RW) of N=uL^{d} steps on a d-dimensional hypercubic lattice of size L^{d} (with periodic boundaries). We systematically explore dependence of the probability Π_{d}(L,u) of percolation (existence of a spanning cluster) of sites not removed by the RW on L and u. The concentration of unvisited sites decays exponentially with increasing u, while the visited sites are highly correlated-their correlations decaying with the distance r as 1/r^{d-2} (in d>2). On increasing L, the percolation probability Π_{d}(L,u) approaches a step function, jumping from 1 to 0 when u crosses a percolation threshold u_{c} that is close to 3 for all 3≤d≤6. Within numerical accuracy, the correlation length associated with percolation diverges with exponents consistent with ν=2/(d-2). There is no percolation threshold at the lower critical dimension of d=2, with the percolation probability approaching a smooth function Π_{2}(∞,u)>0.
随机游走的站点去除如何导致渗流阻塞?为了研究相关站点渗流的这个问题,我们考虑了在大小为 L^d 的 d 维超立方格子上进行的 N=uL^d 步的随机游走(RW)(具有周期性边界)。我们系统地研究了 RW 未去除的站点的渗流(存在跨越簇)的概率 Π_d(L,u) 对 L 和 u 的依赖性。未访问站点的浓度随 u 的增加呈指数衰减,而访问站点具有高度相关性——它们的相关性随距离 r 衰减为 1/r^{d-2}(在 d>2 时)。随着 L 的增加,渗流概率 Π_d(L,u) 接近阶跃函数,当 u 穿过接近所有 3≤d≤6 的渗流阈值 u_c 时,从 1 跳跃到 0。在数值精度内,与渗流相关的关联长度随指数发散,与 ν=2/(d-2) 一致。在临界维度 d=2 下没有渗流阈值,渗流概率接近平滑函数 Π_2(∞,u)>0。