Levi Raz Halifa, Kantor Yacov
The Faculty of Engineering, <a href="https://ror.org/04mhzgx49">Tel Aviv University</a>, Tel Aviv 6997801, Israel.
School of Physics and Astronomy, <a href="https://ror.org/04mhzgx49">Tel Aviv University</a>, Tel Aviv 6997801, Israel.
Phys Rev E. 2024 Aug;110(2-1):024116. doi: 10.1103/PhysRevE.110.024116.
We consider a d-dimensional correlated percolation problem of sites not visited by a random walk on a hypercubic lattice L^{d} for d=3, 4, and 5. The length of the random walk is N=uL^{d}. Close to the critical value u=u_{c}, many geometrical properties of the problem can be described as powers (critical exponents) of u_{c}-u, such as β, which controls the strength of the spanning cluster, and γ, which characterizes the behavior of the mean finite cluster size S. We show that at u_{c} the ratio between the mean mass of the largest cluster M_{1} and the mass of the second largest cluster M_{2} is independent of L and can be used to find u_{c}. We calculate β from the L dependence of M_{1} and M_{2}, and γ from the finite size scaling of S. The resulting exponent β remains close to 1 in all dimensions. The exponent γ decreases from ≈3.9 in d=3 to ≈1.9 in d=4 and ≈1.3 in d=5 towards γ=1 expected in d=6, which is close to γ=4/(d-2).
我们考虑一个与位点相关的渗流问题,该问题涉及在三维、四维和五维的超立方晶格(L^{d})上随机游走未访问的位点。随机游走的长度为(N = uL^{d})。接近临界值(u = u_{c})时,该问题的许多几何性质可以用(u_{c}-u)的幂次(临界指数)来描述,比如控制跨越簇强度的(\beta),以及表征平均有限簇大小(S)行为的(\gamma)。我们表明,在(u_{c})处,最大簇的平均质量(M_{1})与第二大簇的质量(M_{2})之比与(L)无关,可用于确定(u_{c})。我们从(M_{1})和(M_{2})对(L)的依赖关系计算(\beta),并从(S)的有限尺寸标度计算(\gamma)。在所有维度中,得到的指数(\beta)都接近(1)。指数(\gamma)从三维时的约(3.9)降至四维时的约(1.9)以及五维时的约(1.3),朝着六维时预期的(\gamma = 1)变化,这与(\gamma = \frac{4}{d - 2})接近。