Lee Jihyun, Jung Ji Hoon, Hwang Jisung, Park Ji Eon, Kim Ju-Ha, Park Woon Yi, Suh Jin Young, Kim Sung-Hoon
College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea.
Cancers (Basel). 2019 Sep 30;11(10):1470. doi: 10.3390/cancers11101470.
Though Atorvastatin has been used as a hypolipidemic agent, its anticancer mechanisms for repurposing are not fully understood so far. Thus, in the current study, its apoptotic and autophagic mechanisms were investigated in non-small cell lung cancers (NSCLCs). Atorvastatin increased cytotoxicity, sub G1 population, the number of apoptotic bodies, cleaved poly (ADP-ribose) polymerase (PARP) and caspase 3 and activated p53 in H1299, H596, and H460 cells. Notably, Atorvastatin inhibited the expression of c-Myc and induced ribosomal protein L5 and L11, but depletion of L5 reduced PARP cleavages induced by Atorvastatin rather than L11 in H1299 cells. Also, Atorvastatin increased autophagy microtubule-associated protein 1A/1B-light chain 3II (LC3 II) conversion, p62/sequestosome 1 (SQSTM1) accumulation with increased number of LC3II puncta in H1299 cells. However, late stage autophagy inhibitor chloroquine (CQ) increased cytotoxicity in Atorvastatin treated H1299 cells compared to early stage autophagy inhibitor 3-methyladenine (3-MA). Furthermore, autophagic flux assay using RFP-GFP-LC3 constructs and Lysotracker Red or acridine orange-staining demonstrated that autophagosome-lysosome fusion is blocked by Atorvastatin treatment in H1299 cells. Conversely, overexpression of CCR4-NOT transcription complex subunit 2(CNOT2) weakly reversed the ability of Atorvastatin to increase cytotoxicity, sub G1 population, cleavages of PARP and caspase 3, LC3II conversion and p62/SQSTM1 accumulation in H1299 cells. In contrast, CNOT2 depletion enhanced cleavages of PARP and caspase 3, LC3 conversion and p62/SQSTM1 accumulation in Atorvastatin treated H1299 cells. Overall, these findings suggest that CNOT2 signaling is critically involved in Atorvastatin induced apoptotic and autophagic cell death in NSCLCs.
尽管阿托伐他汀已被用作降血脂药物,但其用于重新利用的抗癌机制迄今尚未完全明确。因此,在当前研究中,我们在非小细胞肺癌(NSCLC)中研究了其凋亡和自噬机制。阿托伐他汀增加了H1299、H596和H460细胞的细胞毒性、亚G1期细胞群体、凋亡小体数量、裂解的聚(ADP - 核糖)聚合酶(PARP)和半胱天冬酶3,并激活了p53。值得注意的是,阿托伐他汀抑制了c - Myc的表达并诱导了核糖体蛋白L5和L11,但在H1299细胞中,L5的缺失降低了阿托伐他汀诱导的PARP裂解,而不是L11。此外,阿托伐他汀增加了自噬微管相关蛋白1A/1B轻链3II(LC3 II)的转化、p62/聚集体蛋白1(SQSTM1)的积累,且H1299细胞中LC3II斑点数量增加。然而,与早期自噬抑制剂3 - 甲基腺嘌呤(3 - MA)相比,晚期自噬抑制剂氯喹(CQ)增加了阿托伐他汀处理的H1299细胞的细胞毒性。此外,使用RFP - GFP - LC3构建体以及溶酶体追踪红或吖啶橙染色的自噬通量分析表明,阿托伐他汀处理可阻断H1299细胞中的自噬体 - 溶酶体融合。相反,CCR4 - NOT转录复合体亚基2(CNOT2)的过表达微弱地逆转了阿托伐他汀增加H1299细胞细胞毒性、亚G1期细胞群体、PARP和半胱天冬酶3裂解、LC3II转化以及p62/SQSTM1积累的能力。相比之下,CNOT2的缺失增强了阿托伐他汀处理的H1299细胞中PARP和半胱天冬酶3的裂解、LC3转化以及p62/SQSTM1的积累。总体而言,这些发现表明CNOT2信号通路在阿托伐他汀诱导的NSCLC细胞凋亡和自噬性细胞死亡中起关键作用。