Suppr超能文献

使用 DockBox 包评估和改进共识对接策略的性能。

Assessing and improving the performance of consensus docking strategies using the DockBox package.

机构信息

Department of Oncology, University of Alberta, Edmonton, AB, Canada.

INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Université Claude Bernard Lyon 1, Lyon, France.

出版信息

J Comput Aided Mol Des. 2019 Sep;33(9):817-829. doi: 10.1007/s10822-019-00227-7. Epub 2019 Oct 1.

Abstract

Molecular docking is a well-established computational technique that aims to predict how a ligand binds to a specific protein target, as well as to assess the strength of the binding. Although docking programs are used worldwide for drug discovery, it is not always simple to identify which program or combination of programs provides the best results for a target of interest. Here we present DockBox, a computational package designed to facilitate the use of multiple docking and scoring programs allowing to combine them using different consensus strategies. As part of the DockBox package, a new consensus docking method called score-based consensus docking (SBCD) is introduced. SBCD was found to significantly improve the pose prediction success rates of single docking programs. When applied to virtual screening, SBCD enhanced enrichment factors while producing higher hit rates than standard consensus docking (CD). SBCD can be run with almost no additional computational cost and time compared to CD, if the same docking programs are used for pose generation. Furthermore, SBCD allows the use of many scoring functions to assess consensus without significant overhead, making it a promising new approach for the screening of large chemical libraries. DockBox is an open-source package publicly available at https://pypi.org/project/dockbox .

摘要

分子对接是一种成熟的计算技术,旨在预测配体如何与特定的蛋白质靶标结合,以及评估结合的强度。尽管对接程序在全球范围内被用于药物发现,但要确定哪个程序或程序组合最适合感兴趣的目标,并不总是那么简单。在这里,我们介绍了 DockBox,这是一个计算包,旨在方便使用多种对接和评分程序,并允许使用不同的共识策略对它们进行组合。作为 DockBox 包的一部分,引入了一种新的共识对接方法,称为基于评分的共识对接(SBCD)。SBCD 被发现可以显著提高单个对接程序的构象预测成功率。当应用于虚拟筛选时,SBCD 提高了富集因子,同时产生的命中率高于标准共识对接(CD)。与 CD 相比,如果使用相同的对接程序进行构象生成,SBCD 的运行几乎不需要额外的计算成本和时间。此外,SBCD 允许使用许多评分函数来评估共识,而不会产生显著的开销,使其成为筛选大型化学库的一种很有前途的新方法。DockBox 是一个开源软件包,可在 https://pypi.org/project/dockbox 上获得。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验