Balk Andrew L, Gilbert Ian, Ivkov Robert, Unguris John, Stavis Samuel M
Center for Nanoscale Science and Technology, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA.
Maryland NanoCenter, University of Maryland, College Park, Maryland 20742, USA.
Phys Rev Appl. 2019;11. doi: 10.1103/PhysRevApplied.11.061003.
Bubbles have a rich history as transducers in particle-physics experiments. In a solid-state analogue, we use bubble domains in nanomagnetic films to measure magnetic nanoparticles. This technique can determine the magnetic orientation of a single nanoparticle in a fraction of a second and generate a full hysteresis loop in a few seconds. We achieve this high throughput by tuning the nanomagnetic properties of the films, including the Dzyaloshinskii-Moriya interaction, in an application of topological protection from the skyrmion state to a nanoparticle sensor. We develop the technique on nickel-iron nanorods and iron-oxide nanoparticles, which delineate a wide range of properties and applications. Bubble magnetometry enables precise statistical analysis of the magnetic hysteresis of dispersed nanoparticles, and direct measurement of a transition from superparamagnetic behavior as single nanoparticles to collective behavior in nanoscale agglomerates. These results demonstrate a practical capability for measuring the heterogeneity and interaction of magnetic nanoparticles.
气泡作为粒子物理实验中的换能器有着丰富的历史。在固态类似物中,我们利用纳米磁性薄膜中的气泡畴来测量磁性纳米颗粒。该技术能在几分之一秒内确定单个纳米颗粒的磁取向,并在几秒钟内生成完整的磁滞回线。在从斯格明子态到纳米颗粒传感器的拓扑保护应用中,我们通过调整薄膜的纳米磁性特性(包括Dzyaloshinskii-Moriya相互作用)来实现这种高吞吐量。我们在镍铁纳米棒和氧化铁纳米颗粒上开发了该技术,它们展现出广泛的特性和应用。气泡磁强计能够对分散纳米颗粒的磁滞进行精确的统计分析,并直接测量从单个纳米颗粒的超顺磁行为到纳米级团聚体中的集体行为的转变。这些结果证明了测量磁性纳米颗粒的异质性和相互作用的实际能力。
Phys Rev Appl. 2019
Nano Lett. 2018-10-15
ACS Nano. 2020-11-24