Department of Bioengineering, University of California , Los Angeles, California 90025, United States.
Department of Biomedical Engineering, National University of Singapore , Singapore 117583.
Nano Lett. 2017 Feb 8;17(2):886-892. doi: 10.1021/acs.nanolett.6b04200. Epub 2017 Jan 20.
Techniques offering remote control of neural activity with high spatiotemporal resolution and specificity are invaluable for deciphering the physiological roles of different classes of neurons in brain development and disease. Here, we first confirm that microfabricated substrates with enhanced magnetic field gradients allow for wireless stimulation of neural circuits dosed with magnetic nanoparticles using calcium indicator dyes. We also investigate the mechanism of mechano-transduction in this system and identify that N-type mechano-sensitive calcium ion channels play a key role in signal generation in response to magnetic force. We next applied this method for chronic stimulation of a fragile X syndrome (FXS) neural network model and found that magnetic force-based stimulation modulated the expression of mechano-sensitive ion channels which are out of equilibrium in a number of neurological diseases including FXS. This technique can serve as a tool for acute and chronic modulation of endogenous ion channel expression in neural circuits in a spatially localized manner to investigate a number of disease processes in the future.
技术提供了具有高时空分辨率和特异性的神经活动远程控制,对于破译不同类型神经元在大脑发育和疾病中的生理作用具有不可估量的价值。在这里,我们首先证实了具有增强磁场梯度的微加工基底可以使用钙指示剂染料对用磁性纳米粒子处理的神经回路进行无线刺激。我们还研究了这个系统中的机械转导机制,并确定 N 型机械敏感钙离子通道在响应磁力时的信号产生中起关键作用。我们接下来将这种方法应用于脆性 X 综合征 (FXS) 神经网络模型的慢性刺激,并发现基于磁力的刺激调节了机械敏感离子通道的表达,这些通道在包括 FXS 在内的许多神经疾病中处于失衡状态。这项技术可以作为一种工具,用于以空间定位的方式急性和慢性调节神经回路中内源性离子通道的表达,以研究未来的许多疾病过程。