Suppr超能文献

BDDCS 能否为药物设计照亮目标?

Can BDDCS illuminate targets in drug design?

机构信息

Translational Informatics Division, Department of Internal Medicine, University of New Mexico, Albuquerque, NM, USA.

Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, USA.

出版信息

Drug Discov Today. 2019 Dec;24(12):2299-2306. doi: 10.1016/j.drudis.2019.09.021. Epub 2019 Oct 1.

Abstract

The fact that pharmacokinetic (PK) properties of drugs influence their interaction with protein targets is a principle known for decades. The same cannot be said for the opposite, namely that targets influence the PK properties of drugs. Evidence confirming this possibility is introduced here for the first time, as we show that certain protein families have a clear preference for drugs with specific PK properties. We investigate this by cross-referencing 'druggable target' annotations for >1000 US Food and Drug Administration (FDA)-approved drugs with their PK profile, as defined by the Biopharmaceutics Drug Disposition Classification System (BDDCS) criteria, and then examine the BDDCS preference for several major target protein families and therapeutic categories. Our findings suggest a novel way to conduct drug discovery by focusing PK profiles at the very early stage of target selection.

摘要

事实上,药物的药代动力学(PK)特性会影响其与蛋白靶标的相互作用,这一原理已经为人所知数十年。但与之相反的情况却并非如此,即靶标会影响药物的 PK 特性。本文首次引入了证实这种可能性的证据,因为我们表明某些蛋白家族显然更偏爱具有特定 PK 特性的药物。我们通过交叉引用超过 1000 种美国食品和药物管理局 (FDA) 批准药物的“可成药靶标”注释及其 PK 特征(根据生物药剂学药物处置分类系统 (BDDCS) 标准定义),并检查了 BDDCS 对几个主要靶标蛋白家族和治疗类别的偏好,来研究这一问题。我们的研究结果表明,通过在选择靶标早期就重点关注 PK 特征,可以为药物发现提供一种新方法。

相似文献

1
Can BDDCS illuminate targets in drug design?
Drug Discov Today. 2019 Dec;24(12):2299-2306. doi: 10.1016/j.drudis.2019.09.021. Epub 2019 Oct 1.
2
4
BDDCS applied to over 900 drugs.
AAPS J. 2011 Dec;13(4):519-47. doi: 10.1208/s12248-011-9290-9. Epub 2011 Aug 5.
7
BDDCS class prediction for new molecular entities.
Mol Pharm. 2012 Mar 5;9(3):570-80. doi: 10.1021/mp2004302. Epub 2012 Feb 7.
10
Few Drugs Display Flip-Flop Pharmacokinetics and These Are Primarily Associated with Classes 3 and 4 of the BDDCS.
J Pharm Sci. 2015 Sep;104(9):3229-35. doi: 10.1002/jps.24505. Epub 2015 May 25.

引用本文的文献

1
Neural Network Models for Predicting Solubility and Metabolism Class of Drugs in the Biopharmaceutics Drug Disposition Classification System (BDDCS).
Eur J Drug Metab Pharmacokinet. 2024 Jan;49(1):1-6. doi: 10.1007/s13318-023-00861-5. Epub 2023 Oct 21.
2
Exploring DrugCentral: from molecular structures to clinical effects.
J Comput Aided Mol Des. 2023 Dec;37(12):681-694. doi: 10.1007/s10822-023-00529-x. Epub 2023 Sep 14.
3
DrugCentral 2021 supports drug discovery and repositioning.
Nucleic Acids Res. 2021 Jan 8;49(D1):D1160-D1169. doi: 10.1093/nar/gkaa997.

本文引用的文献

1
DrugCentral 2018: an update.
Nucleic Acids Res. 2019 Jan 8;47(D1):D963-D970. doi: 10.1093/nar/gky963.
2
New insights in the in vitro characterisation and molecular modelling of the P-glycoprotein inhibitory promiscuity.
Eur J Pharm Sci. 2018 Aug 30;121:85-94. doi: 10.1016/j.ejps.2018.04.039. Epub 2018 Apr 28.
3
Unexplored therapeutic opportunities in the human genome.
Nat Rev Drug Discov. 2018 May;17(5):317-332. doi: 10.1038/nrd.2018.14. Epub 2018 Mar 23.
4
A comprehensive map of molecular drug targets.
Nat Rev Drug Discov. 2017 Jan;16(1):19-34. doi: 10.1038/nrd.2016.230. Epub 2016 Dec 2.
5
BDDCS, the Rule of 5 and drugability.
Adv Drug Deliv Rev. 2016 Jun 1;101:89-98. doi: 10.1016/j.addr.2016.05.007. Epub 2016 May 13.
7
Lead- and drug-like compounds: the rule-of-five revolution.
Drug Discov Today Technol. 2004 Dec;1(4):337-41. doi: 10.1016/j.ddtec.2004.11.007.
8
Target identification and mechanism of action in chemical biology and drug discovery.
Nat Chem Biol. 2013 Apr;9(4):232-40. doi: 10.1038/nchembio.1199.
9
The SLC12 family of electroneutral cation-coupled chloride cotransporters.
Mol Aspects Med. 2013 Apr-Jun;34(2-3):288-98. doi: 10.1016/j.mam.2012.05.002.
10
SLC6 transporters: structure, function, regulation, disease association and therapeutics.
Mol Aspects Med. 2013 Apr-Jun;34(2-3):197-219. doi: 10.1016/j.mam.2012.07.002.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验