Suppr超能文献

基于生物标志物的阿尔茨海默病临床综合征聚类。

Biomarker-guided clustering of Alzheimer's disease clinical syndromes.

机构信息

Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy; Department of Radiology, "Athinoula A. Martinos" Center for Biomedical Imaging, Boston, MA, USA; Harvard Medical School, Boston, MA, USA.

Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Paris, France; Brain & Spine Institute (ICM), INSERM U 1127, Paris, France; Department of Neurology, Institute of Memory and Alzheimer's Disease (IM2A), Pitié-Salpêtrière Hospital, Paris, France.

出版信息

Neurobiol Aging. 2019 Nov;83:42-53. doi: 10.1016/j.neurobiolaging.2019.08.032. Epub 2019 Sep 10.

Abstract

Alzheimer's disease (AD) neuropathology is extremely heterogeneous, and the evolution from preclinical to mild cognitive impairment until dementia is driven by interacting genetic/biological mechanisms not fully captured by current clinical/research criteria. We characterized the heterogeneous "construct" of AD through a cerebrospinal fluid biomarker-guided stratification approach. We analyzed 5 validated pathophysiological cerebrospinal fluid biomarkers (Aβ, t-tau, p-tau, NFL, YKL-40) in 113 participants (healthy controls [N = 20], subjective memory complainers [N = 36], mild cognitive impairment [N = 20], and AD dementia [N = 37], age: 66.7 ± 10.4, 70.4 ± 7.7, 71.7 ± 8.4, 76.2 ± 3.5 years [mean ± SD], respectively) using Density-Based Spatial Clustering of Applications with Noise, which does not require a priori determination of the number of clusters. We found 5 distinct clusters (sizes: N = 38, 16, 24, 14, and 21) whose composition was independent of phenotypical groups. Two clusters showed biomarker profiles linked to neurodegenerative processes not associated with classical AD-related pathophysiology. One cluster was characterized by the neuroinflammation biomarker YKL-40. Combining nonlinear data aggregation with informative biomarkers can generate novel patient strata which are representative of cellular/molecular pathophysiology and may aid in predicting disease evolution and mechanistic drug response.

摘要

阿尔茨海默病(AD)的神经病理学表现极具异质性,从临床前期到轻度认知障碍再到痴呆的进展是由相互作用的遗传/生物学机制驱动的,这些机制尚未被当前的临床/研究标准所完全捕捉到。我们通过基于脑脊液生物标志物的分层方法来描述 AD 的异质性“结构”。我们分析了 113 名参与者(健康对照组 [N=20]、主观记忆抱怨者 [N=36]、轻度认知障碍 [N=20] 和 AD 痴呆 [N=37])的 5 种经过验证的生理病理学脑脊液生物标志物(Aβ、t-tau、p-tau、NFL、YKL-40),参与者的年龄分别为 66.7±10.4、70.4±7.7、71.7±8.4、76.2±3.5 岁(平均值±标准差)。我们使用基于密度的空间聚类应用噪声(Density-Based Spatial Clustering of Applications with Noise,DBSCAN),该方法不需要先验确定聚类的数量,从而分析了这些数据。我们发现了 5 个不同的聚类(大小分别为 N=38、16、24、14 和 21),它们的组成与表型组无关。两个聚类显示出与神经退行性过程相关的生物标志物谱,与经典的 AD 相关的病理生理学无关。一个聚类的特点是神经炎症生物标志物 YKL-40。将非线性数据聚合与信息生物标志物相结合,可以生成新的患者亚群,这些亚群代表细胞/分子病理生理学,可能有助于预测疾病进展和机制药物反应。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验