人工智能在阿尔茨海默病和痴呆症生物标志物发现中的应用。

Artificial intelligence for biomarker discovery in Alzheimer's disease and dementia.

机构信息

Department of Psychiatry, Oxford University, Oxford, UK.

Department of Clinical Neurosciences, Stroke Research Group, University of Cambridge, Cambridge, UK.

出版信息

Alzheimers Dement. 2023 Dec;19(12):5860-5871. doi: 10.1002/alz.13390. Epub 2023 Aug 31.

Abstract

With the increase in large multimodal cohorts and high-throughput technologies, the potential for discovering novel biomarkers is no longer limited by data set size. Artificial intelligence (AI) and machine learning approaches have been developed to detect novel biomarkers and interactions in complex data sets. We discuss exemplar uses and evaluate current applications and limitations of AI to discover novel biomarkers. Remaining challenges include a lack of diversity in the data sets available, the sheer complexity of investigating interactions, the invasiveness and cost of some biomarkers, and poor reporting in some studies. Overcoming these challenges will involve collecting data from underrepresented populations, developing more powerful AI approaches, validating the use of noninvasive biomarkers, and adhering to reporting guidelines. By harnessing rich multimodal data through AI approaches and international collaborative innovation, we are well positioned to identify clinically useful biomarkers that are accurate, generalizable, unbiased, and acceptable in clinical practice. HIGHLIGHTS: Artificial intelligence and machine learning approaches may accelerate dementia biomarker discovery. Remaining challenges include data set suitability due to size and bias in cohort selection. Multimodal data, diverse data sets, improved machine learning approaches, real-world validation, and interdisciplinary collaboration are required.

摘要

随着大型多模态队列和高通量技术的增加,发现新的生物标志物的潜力不再受数据集大小的限制。已经开发了人工智能 (AI) 和机器学习方法来检测复杂数据集中的新生物标志物和相互作用。我们讨论了范例应用,并评估了 AI 当前在发现新生物标志物方面的应用和局限性。仍然存在的挑战包括可用数据集缺乏多样性、研究相互作用的复杂性、一些生物标志物的侵入性和成本以及一些研究报告的不完善。克服这些挑战将涉及从代表性不足的人群中收集数据、开发更强大的 AI 方法、验证非侵入性生物标志物的使用以及遵守报告指南。通过利用 AI 方法和国际合作创新丰富的多模态数据,我们有很好的机会识别出在临床实践中准确、可推广、无偏倚且可接受的临床有用生物标志物。 要点:人工智能和机器学习方法可能会加速痴呆症生物标志物的发现。仍然存在的挑战包括由于队列选择的大小和偏差导致数据集适用性问题。需要多模态数据、多样化数据集、改进的机器学习方法、真实世界验证和跨学科合作。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索