Suppr超能文献

从头鉴定 CRISPR-Cas9 靶向 sgRNA 敲除筛选中的必需蛋白结构域。

De novo identification of essential protein domains from CRISPR-Cas9 tiling-sgRNA knockout screens.

机构信息

Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX, 78957, USA.

The Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.

出版信息

Nat Commun. 2019 Oct 4;10(1):4541. doi: 10.1038/s41467-019-12489-8.

Abstract

High-throughput CRISPR-Cas9 knockout screens using a tiling-sgRNA design permit in situ evaluation of protein domain function. Here, to facilitate de novo identification of essential protein domains from such screens, we propose ProTiler, a computational method for the robust mapping of CRISPR knockout hyper-sensitive (CKHS) regions, which refer to the protein regions associated with a strong sgRNA dropout effect in the screens. Applied to a published CRISPR tiling screen dataset, ProTiler identifies 175 CKHS regions in 83 proteins. Of these CKHS regions, more than 80% overlap with annotated Pfam domains, including all of the 15 known drug targets in the dataset. ProTiler also reveals unannotated essential domains, including the N-terminus of the SWI/SNF subunit SMARCB1, which is validated experimentally. Surprisingly, the CKHS regions are negatively correlated with phosphorylation and acetylation sites, suggesting that protein domains and post-translational modification sites have distinct sensitivities to CRISPR-Cas9 mediated amino acids loss.

摘要

高通量 CRISPR-Cas9 敲除筛选使用平铺 sgRNA 设计可实现蛋白质结构域功能的原位评估。在这里,为了促进从这些筛选中发现必需蛋白质结构域,我们提出了 ProTiler,这是一种用于稳健映射 CRISPR 敲除超敏 (CKHS) 区域的计算方法,CKHS 区域是指与筛选中 sgRNA 大量缺失效应相关的蛋白质区域。应用于已发表的 CRISPR 平铺筛选数据集,ProTiler 在 83 种蛋白质中识别出 175 个 CKHS 区域。这些 CKHS 区域中,超过 80%与注释的 Pfam 结构域重叠,包括数据集中所有 15 个已知的药物靶点。ProTiler 还揭示了未注释的必需结构域,包括 SWI/SNF 亚基 SMARCB1 的 N 端,该结构域已通过实验验证。令人惊讶的是,CKHS 区域与磷酸化和乙酰化位点呈负相关,这表明蛋白质结构域和翻译后修饰位点对 CRISPR-Cas9 介导的氨基酸缺失具有不同的敏感性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5eb0/6778102/204338a0e829/41467_2019_12489_Fig1_HTML.jpg

相似文献

1
De novo identification of essential protein domains from CRISPR-Cas9 tiling-sgRNA knockout screens.
Nat Commun. 2019 Oct 4;10(1):4541. doi: 10.1038/s41467-019-12489-8.
2
sgRNA Sequence Motifs Blocking Efficient CRISPR/Cas9-Mediated Gene Editing.
Cell Rep. 2019 Jan 29;26(5):1098-1103.e3. doi: 10.1016/j.celrep.2019.01.024.
3
Sequence determinants of improved CRISPR sgRNA design.
Genome Res. 2015 Aug;25(8):1147-57. doi: 10.1101/gr.191452.115. Epub 2015 Jun 10.
7
Identification of oncogenic driver mutations by genome-wide CRISPR-Cas9 dropout screening.
BMC Genomics. 2016 Sep 9;17(1):723. doi: 10.1186/s12864-016-3042-2.
8
Bioinformatic and cell-based tools for pooled CRISPR knockout screening in mosquitos.
Nat Commun. 2021 Nov 24;12(1):6825. doi: 10.1038/s41467-021-27129-3.
10
sgRNA Scorer 2.0: A Species-Independent Model To Predict CRISPR/Cas9 Activity.
ACS Synth Biol. 2017 May 19;6(5):902-904. doi: 10.1021/acssynbio.6b00343. Epub 2017 Feb 10.

引用本文的文献

1
A specific form of cPRC1 containing CBX4 is co-opted to mediate oncogenic gene repression in diffuse midline glioma.
Mol Cell. 2025 Jun 5;85(11):2110-2127.e7. doi: 10.1016/j.molcel.2025.04.026. Epub 2025 May 21.
2
Unraveling the future of genomics: CRISPR, single-cell omics, and the applications in cancer and immunology.
Front Genome Ed. 2025 Apr 11;7:1565387. doi: 10.3389/fgeed.2025.1565387. eCollection 2025.
4
Nuclear Control of Mitochondrial Homeostasis and Venetoclax Efficacy in AML via COX4I1.
Adv Sci (Weinh). 2025 Feb;12(6):e2404620. doi: 10.1002/advs.202404620. Epub 2024 Dec 23.
7
Induced pluripotent stem cells (iPSCs): molecular mechanisms of induction and applications.
Signal Transduct Target Ther. 2024 Apr 26;9(1):112. doi: 10.1038/s41392-024-01809-0.
9
Therapeutic targeting Tudor domains in leukemia via CRISPR-Scan Assisted Drug Discovery.
Sci Adv. 2024 Feb 23;10(8):eadk3127. doi: 10.1126/sciadv.adk3127.
10
A novel class of inhibitors that disrupts the stability of integrin heterodimers identified by CRISPR-tiling-instructed genetic screens.
Nat Struct Mol Biol. 2024 Mar;31(3):465-475. doi: 10.1038/s41594-024-01211-y. Epub 2024 Feb 5.

本文引用的文献

1
A novel protein domain in an ancestral splicing factor drove the evolution of neural microexons.
Nat Ecol Evol. 2019 Apr;3(4):691-701. doi: 10.1038/s41559-019-0813-6. Epub 2019 Mar 4.
3
BRD4 and Cancer: going beyond transcriptional regulation.
Mol Cancer. 2018 Nov 22;17(1):164. doi: 10.1186/s12943-018-0915-9.
4
Predictable and precise template-free CRISPR editing of pathogenic variants.
Nature. 2018 Nov;563(7733):646-651. doi: 10.1038/s41586-018-0686-x. Epub 2018 Nov 7.
6
Engineered CRISPR-Cas9 nuclease with expanded targeting space.
Science. 2018 Sep 21;361(6408):1259-1262. doi: 10.1126/science.aas9129. Epub 2018 Aug 30.
7
The ZZ domain of p300 mediates specificity of the adjacent HAT domain for histone H3.
Nat Struct Mol Biol. 2018 Sep;25(9):841-849. doi: 10.1038/s41594-018-0114-9. Epub 2018 Aug 27.
9
A Non-catalytic Function of SETD1A Regulates Cyclin K and the DNA Damage Response.
Cell. 2018 Feb 22;172(5):1007-1021.e17. doi: 10.1016/j.cell.2018.01.032.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验