Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain.
Donnelly Centre, University of Toronto, Toronto, Ontario, Canada.
Nat Ecol Evol. 2019 Apr;3(4):691-701. doi: 10.1038/s41559-019-0813-6. Epub 2019 Mar 4.
The mechanisms by which entire programmes of gene regulation emerged during evolution are poorly understood. Neuronal microexons represent the most conserved class of alternative splicing in vertebrates, and are critical for proper brain development and function. Here, we discover neural microexon programmes in non-vertebrate species and trace their origin to bilaterian ancestors through the emergence of a previously uncharacterized 'enhancer of microexons' (eMIC) protein domain. The eMIC domain originated as an alternative, neural-enriched splice isoform of the pan-eukaryotic Srrm2/SRm300 splicing factor gene, and subsequently became fixed in the vertebrate and neuronal-specific splicing regulator Srrm4/nSR100 and its paralogue Srrm3. Remarkably, the eMIC domain is necessary and sufficient for microexon splicing, and functions by interacting with the earliest components required for exon recognition. The emergence of a novel domain with restricted expression in the nervous system thus resulted in the evolution of splicing programmes that qualitatively expanded the neuronal molecular complexity in bilaterians.
在进化过程中,整个基因调控程序是如何产生的,这一点我们还不太了解。神经元小外显子是脊椎动物中最保守的可变剪接类别,对大脑的正常发育和功能至关重要。在这里,我们在非脊椎动物物种中发现了神经小外显子程序,并通过一个以前未被描述的“小外显子增强子”(eMIC)蛋白结构域的出现,追溯到两侧对称动物的祖先。eMIC 结构域最初是一个普遍存在于真核生物中的 Srrm2/SRm300 剪接因子基因的另一种、富含神经的剪接异构体,随后在脊椎动物和神经元特异性剪接调节因子 Srrm4/nSR100 及其同源物 Srrm3 中固定下来。值得注意的是,eMIC 结构域是小外显子剪接所必需和充分的,并且通过与识别外显子所需的最早成分相互作用发挥作用。一个在神经系统中具有受限表达的新结构域的出现,导致了剪接程序的进化,从而使两侧对称动物的神经元分子复杂性在质量上得到扩展。