Elías Ricardo Gabriel, Vidal-Silva Nicolás, Carvalho-Santos Vagson L
Departamento de Física, Universidad de Santiago de Chile, Avda. Ecuador, 3493, Santiago, Chile.
CEDENNA, Universidad de Santiago de Chile, Avda. Ecuador, 3493, Santiago, Chile.
Sci Rep. 2019 Oct 4;9(1):14309. doi: 10.1038/s41598-019-50395-7.
We study the relationship between the winding number of magnetic merons and the Gaussian curvature of two-dimensional magnetic surfaces. We show that positive (negative) Gaussian curvatures privilege merons with positive (negative) winding number. As in the case of unidimensional domain walls, we found that chirality is connected to the polarity of the core. Both effects allow to predict the topological properties of metastable states knowing the geometry of the surface. These features are related with the recently predicted Dzyaloshinskii-Moriya emergent term of curved surfaces. The presented results are at our knowledge the first ones drawing attention about a direct relation between geometric properties of the surfaces and the topology of the hosted solitons.
我们研究了磁子的缠绕数与二维磁性表面的高斯曲率之间的关系。我们表明,正(负)高斯曲率有利于具有正(负)缠绕数的磁子。如同在一维畴壁的情况中一样,我们发现手性与核心的极性相关。这两种效应都使得在知道表面几何形状的情况下能够预测亚稳态的拓扑性质。这些特征与最近预测的弯曲表面的Dzyaloshinskii-Moriya涌现项有关。据我们所知,所呈现的结果是首次引起人们关注表面几何性质与所承载孤子的拓扑之间的直接关系。