Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada; Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, T6G 2R8, Canada.
Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, T6G 2R8, Canada.
Cryobiology. 2020 Dec;97:198-216. doi: 10.1016/j.cryobiol.2019.09.017. Epub 2019 Oct 3.
Models of cellular osmotic behaviour depend on thermodynamic solution theories to calculate chemical potentials in the solutions inside and outside the cell. These solutions are generally thermodynamically non-ideal under cryobiological conditions. The molality-based Elliott et al. form of the multi-solute osmotic virial equation is a solution theory which has been demonstrated to provide accurate predictions in cryobiological solutions, accounting for the non-ideality of these solutions using solute-specific thermodynamic parameters called osmotic virial coefficients. However, this solution theory requires as inputs the exact concentration of every solute in the solution being modeled, which poses a problem for the cytoplasm, where such detailed information is rarely available. This problem can be overcome by using a grouped solute approach for modeling the cytoplasm, where all the non-permeating intracellular solutes are treated as a single non-permeating "grouped" intracellular solute. We have recently shown (Zielinski et al., J Physical Chemistry B, 2017) that such a grouped solute approach is theoretically valid when used with the Elliott et al. model, and Ross-Rodriguez et al. (Biopreservation and Biobanking, 2012) have previously developed a method for measuring the cell type-specific osmotic virial coefficients of the grouped intracellular solute. However, the Ross-Rodriguez et al. method suffers from a lack of precision, which-as we demonstrate in this work-can severely impact the accuracy of osmotic model predictions under certain conditions. Thus, we herein develop a novel method for measuring grouped intracellular solute osmotic virial coefficients which yields more precise values than the existing method and then apply this new method to measure these coefficients for human umbilical vein endothelial cells.
细胞渗透行为模型依赖于热力学溶液理论来计算细胞内外溶液中的化学势。在低温生物学条件下,这些溶液通常在热力学上是非理想的。基于克分子浓度的 Elliott 等人提出的多溶质渗透偏摩尔体积方程是一种溶液理论,该理论已被证明可在低温生物学溶液中提供准确的预测,通过使用称为渗透偏摩尔体积系数的溶质特异性热力学参数来解释这些溶液的非理想性。然而,该溶液理论需要作为输入的是模型溶液中每种溶质的确切浓度,这对于细胞质来说是一个问题,因为细胞质中很少有这种详细的信息。通过使用分组溶质方法来模拟细胞质,可以克服这个问题,其中所有不可渗透的细胞内溶质都被视为单个不可渗透的“分组”细胞内溶质。我们最近表明(Zielinski 等人,J. Phys. Chem. B,2017),当与 Elliott 等人的模型一起使用时,这种分组溶质方法在理论上是有效的,而 Ross-Rodriguez 等人(Biopreservation and Biobanking,2012)之前已经开发出一种测量分组细胞内溶质的细胞类型特异性渗透偏摩尔体积系数的方法。然而,Ross-Rodriguez 等人的方法存在精度不足的问题,正如我们在这项工作中所表明的,在某些条件下,这会严重影响渗透模型预测的准确性。因此,我们在此开发了一种测量分组细胞内溶质渗透偏摩尔体积系数的新方法,该方法比现有方法产生更精确的值,然后应用该新方法测量人脐静脉内皮细胞的这些系数。