Zhang Shuming, Wang Minjuan, Wen Mao, Chen Jianhong, Li Hu, Xie Chuan, Fan Wangtengfei, Wang Qingfeng, Huang Hao
State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China.
AECC Beijing Institute of Aeronautical Materials, P.O.Box: 81-15, Beijing 100095, China.
Materials (Basel). 2019 Oct 6;12(19):3257. doi: 10.3390/ma12193257.
Continuous SiC fiber-reinforced TiAlNb matrix composites have a great potential for high-temperature aviation structure applications, and their properties strongly depend on the microstructure of the interfacial reaction layer. Notably, introducing diffusion barrier coatings has still been a popular strategy for optimizing the interfacial structure and interfacial properties of SiC/Ti. In this work, C coating and C/BC duplex coating were successfully fabricated onto SiC fibers via chemical vapor deposition (CVD), then consolidated into the SiC/C/TiAlNb and the SiC/C/BC/TiAlNb composites, respectively, via hot isostatic pressing (HIP) under the condition of 970 °C, 150 MPa, 120 min, and finally furnace cooled to room temperature. The C- and C/BC-dominated interfacial reactions in the SiC/C/TiAlNb and the SiC/C/BC/TiAlNb were explored, revealing two different reaction products sequences: The different-sized TiC and the coarse-grained (Ti,Nb)C + AlNb for the SiC/C/TiAlNb; and the fine-grained TiB + TiC, the needle-shaped (Ti,Nb)B/NbB + (Ti,Nb)C, the coarse-grained (Ti,Nb)C + AlNb for the SiC/C/BC/TiAlNb. Annealing experiments were further carried out to verify the different reaction kinetics caused by C coating and C/BC duplex coating. The reaction layer (RL)-dominated interfacial strength and tensile strength estimations showed that higher interface strength and tensile strength occurred in the SiC/C/TiAlNb instead of the SiC/C/BC/TiAlNb, when the same failure mode of fiber push-out took place.
连续碳化硅纤维增强TiAlNb基复合材料在高温航空结构应用方面具有巨大潜力,其性能强烈依赖于界面反应层的微观结构。值得注意的是,引入扩散阻挡涂层仍然是优化SiC/Ti界面结构和界面性能的常用策略。在这项工作中,通过化学气相沉积(CVD)成功地在SiC纤维上制备了C涂层和C/BC双涂层,然后在970℃、150MPa、120min的条件下通过热等静压(HIP)分别将它们固结为SiC/C/TiAlNb和SiC/C/BC/TiAlNb复合材料,最后随炉冷却至室温。探索了SiC/C/TiAlNb和SiC/C/BC/TiAlNb中以C和C/BC为主导的界面反应,揭示了两种不同的反应产物序列:SiC/C/TiAlNb为尺寸不同的TiC和粗晶(Ti,Nb)C + AlNb;SiC/C/BC/TiAlNb为细晶TiB + TiC、针状(Ti,Nb)B/NbB +(Ti,Nb)C、粗晶(Ti,Nb)C + AlNb。进一步进行了退火实验以验证由C涂层和C/BC双涂层引起的不同反应动力学。反应层(RL)主导的界面强度和拉伸强度估计表明,当发生相同的纤维拔出失效模式时,SiC/C/TiAlNb中的界面强度和拉伸强度高于SiC/C/BC/TiAlNb。