Illarionov Anatoliy G, Stepanov Stepan I, Naschetnikova Inna A, Popov Artemiy A, Soundappan Prasanth, Thulasi Raman K H, Suwas Satyam
Heat Treatment & Physics of Metals Department, Ural Federal University Named after the First President of Russia B.N. Yeltsin, 19 Mira St., 620002 Ekaterinburg, Russia.
M. N. Mikheev Institute of Metal Physics, 18 S. Kovalevskaya St., 620108 Ekaterinburg, Russia.
Materials (Basel). 2023 Jan 20;16(3):991. doi: 10.3390/ma16030991.
Titanium alloys based on orthorhombic titanium aluminide TiAlNb are promising refractory materials for aircraft engine parts in the operating temperature range from 600-700 °C. Parts made of TiAlNb-based alloys by traditional technologies, such as casting and metal forming, have not yet found wide application due to the sensitivity of processability and mechanical properties in chemical composition and microstructure compared with commercial solid-solution-based titanium alloys. In the last three decades, metal additive manufacturing (MAM) has attracted the attention of scientists and engineers for the production of intermetallic alloys based on TiAlNb. This review summarizes the recent achievements in the production of O-phase-based Ti alloys using MAM, including the analysis of the feedstock materials, technological processes, machines, microstructure, phase composition and mechanical properties. Powder bed fusion (PBF) and direct energy deposition (DED) are the most widely employed MAM processes to produce O-phase alloys. MAM provides fully dense, fine-grained material with a superior combination of mechanical properties at room temperature. Further research on MAM for the production of critical parts made of TiAlNb-based alloys can be focused on a detailed study of the influence of post-processing and chemical composition on the formation of the structure and mechanical properties, including cyclic loading, fracture toughness, and creep resistance.
基于正交晶系钛铝化物TiAlNb的钛合金是600 - 700°C工作温度范围内用于飞机发动机部件的有前景的难熔材料。与商用固溶体基钛合金相比,通过传统技术(如铸造和金属成型)制造的TiAlNb基合金零件,由于其加工性能和机械性能对化学成分和微观结构敏感,尚未得到广泛应用。在过去三十年中,金属增材制造(MAM)在生产基于TiAlNb的金属间化合物合金方面引起了科学家和工程师的关注。本综述总结了使用MAM生产O相基钛合金的最新成果,包括对原料、工艺流程、机器、微观结构、相组成和机械性能的分析。粉末床熔融(PBF)和直接能量沉积(DED)是生产O相合金最广泛使用的MAM工艺。MAM可提供室温下具有优异机械性能组合的全致密、细晶粒材料。对用于生产TiAlNb基合金关键零件的MAM的进一步研究可集中于详细研究后处理和化学成分对结构和机械性能形成的影响,包括循环加载、断裂韧性和抗蠕变性。