Suppr超能文献

GDGT 环化蛋白可鉴定海洋中四醚脂质的主要古菌来源。

GDGT cyclization proteins identify the dominant archaeal sources of tetraether lipids in the ocean.

机构信息

Department of Earth System Science, Stanford University, Stanford, CA 94305.

Department of Geosciences, University of Oklahoma, Norman, OK 73019.

出版信息

Proc Natl Acad Sci U S A. 2019 Nov 5;116(45):22505-22511. doi: 10.1073/pnas.1909306116. Epub 2019 Oct 7.

Abstract

Glycerol dibiphytanyl glycerol tetraethers (GDGTs) are distinctive archaeal membrane-spanning lipids with up to eight cyclopentane rings and/or one cyclohexane ring. The number of rings added to the GDGT core structure can vary as a function of environmental conditions, such as changes in growth temperature. This physiological response enables cyclic GDGTs preserved in sediments to be employed as proxies for reconstructing past global and regional temperatures and to provide fundamental insights into ancient climate variability. Yet, confidence in GDGT-based paleotemperature proxies is hindered by uncertainty concerning the archaeal communities contributing to GDGT pools in modern environments and ambiguity in the environmental and physiological factors that affect GDGT cyclization in extant archaea. To properly constrain these uncertainties, a comprehensive understanding of GDGT biosynthesis is required. Here, we identify 2 GDGT ring synthases, GrsA and GrsB, essential for GDGT ring formation in Both proteins are radical S-adenosylmethionine proteins, indicating that GDGT cyclization occurs through a free radical mechanism. In addition, we demonstrate that GrsA introduces rings specifically at the C-7 position of the core GDGT lipid, while GrsB cyclizes at the C-3 position, suggesting that cyclization patterns are differentially controlled by 2 separate enzymes and potentially influenced by distinct environmental factors. Finally, phylogenetic analyses of the Grs proteins reveal that marine Thaumarchaeota, and not Euryarchaeota, are the dominant source of cyclized GDGTs in open ocean settings, addressing a major source of uncertainty in GDGT-based paleotemperature proxy applications.

摘要

甘油二植烷甘油四醚 (GDGTs) 是一种独特的细菌膜跨越脂质,具有多达八个环戊烷环和/或一个环己烷环。GDGT 核心结构中添加的环数可以根据环境条件而变化,例如生长温度的变化。这种生理反应使沉积物中保存的环状 GDGT 能够作为重建过去全球和区域温度的指标,并为古代气候变化提供基本的见解。然而,基于 GDGT 的古温度代用指标的可信度受到现代环境中对 GDGT 池有贡献的古细菌群落的不确定性以及影响现存古细菌 GDGT 环化的环境和生理因素的模糊性的阻碍。为了正确限制这些不确定性,需要对 GDGT 的生物合成有全面的了解。在这里,我们确定了 2 种 GDGT 环合酶,GrsA 和 GrsB,它们对 GDGT 环形成至关重要。这两种蛋白质都是自由基 S-腺苷甲硫氨酸蛋白,表明 GDGT 环化是通过自由基机制发生的。此外,我们证明 GrsA 专门在核心 GDGT 脂质的 C-7 位置引入环,而 GrsB 在 C-3 位置环化,这表明环化模式由 2 种不同的酶差异控制,并且可能受到不同环境因素的影响。最后,对 Grs 蛋白的系统发育分析表明,海洋 Thaumarchaeota 而不是 Euryarchaeota 是开阔海洋环境中环化 GDGT 的主要来源,解决了 GDGT 基古温度代用指标应用中的一个主要不确定性来源。

相似文献

1
GDGT cyclization proteins identify the dominant archaeal sources of tetraether lipids in the ocean.
Proc Natl Acad Sci U S A. 2019 Nov 5;116(45):22505-22511. doi: 10.1073/pnas.1909306116. Epub 2019 Oct 7.
2
Thermophilic archaeon orchestrates temporal expression of GDGT ring synthases in response to temperature and acidity stress.
Environ Microbiol. 2023 Feb;25(2):575-587. doi: 10.1111/1462-2920.16301. Epub 2022 Dec 21.
3
Identification of two archaeal GDGT lipid-modifying proteins reveals diverse microbes capable of GMGT biosynthesis and modification.
Proc Natl Acad Sci U S A. 2024 Jun 25;121(26):e2318761121. doi: 10.1073/pnas.2318761121. Epub 2024 Jun 17.
4
Identification of a protein responsible for the synthesis of archaeal membrane-spanning GDGT lipids.
Nat Commun. 2022 Mar 22;13(1):1545. doi: 10.1038/s41467-022-29264-x.
5
Calditol-linked membrane lipids are required for acid tolerance in .
Proc Natl Acad Sci U S A. 2018 Dec 18;115(51):12932-12937. doi: 10.1073/pnas.1814048115. Epub 2018 Dec 5.
6
Archaeal lipids trace ecology and evolution of marine ammonia-oxidizing archaea.
Proc Natl Acad Sci U S A. 2022 Aug 2;119(31):e2123193119. doi: 10.1073/pnas.2123193119. Epub 2022 Jul 29.
7
Energy flux controls tetraether lipid cyclization in Sulfolobus acidocaldarius.
Environ Microbiol. 2020 Jan;22(1):343-353. doi: 10.1111/1462-2920.14851. Epub 2019 Nov 25.
8
Multiple environmental parameters impact lipid cyclization in Sulfolobus acidocaldarius.
Environ Microbiol. 2020 Sep;22(9):4046-4056. doi: 10.1111/1462-2920.15194.
9
Tetraether archaeal lipids promote long-term survival in extreme conditions.
Mol Microbiol. 2024 May;121(5):882-894. doi: 10.1111/mmi.15240. Epub 2024 Feb 19.

引用本文的文献

2
Cyclization of archaeal membrane lipids impacts membrane protein activity and archaellum formation.
Proc Natl Acad Sci U S A. 2025 May 20;122(20):e2423648122. doi: 10.1073/pnas.2423648122. Epub 2025 May 12.
4
Bilayer-Forming Lipids Enhance Archaeal Monolayer Membrane Stability.
Int J Mol Sci. 2025 Mar 26;26(7):3045. doi: 10.3390/ijms26073045.
5
Discovering Hidden Archaeal and Bacterial Lipid Producers in a Euxinic Marine System.
Environ Microbiol. 2025 Mar;27(3):e70054. doi: 10.1111/1462-2920.70054.
6
Structure Diversity and Properties of Some Bola-like Natural Products.
Mar Drugs. 2024 Dec 24;23(1):3. doi: 10.3390/md23010003.
7
Metabolic activities of marine ammonia-oxidizing archaea orchestrated by quorum sensing.
mLife. 2024 Sep 30;3(3):417-429. doi: 10.1002/mlf2.12144. eCollection 2024 Sep.
8
Isolation of a methyl-reducing methanogen outside the Euryarchaeota.
Nature. 2024 Aug;632(8027):1124-1130. doi: 10.1038/s41586-024-07728-y. Epub 2024 Jul 24.
10
Identification of two archaeal GDGT lipid-modifying proteins reveals diverse microbes capable of GMGT biosynthesis and modification.
Proc Natl Acad Sci U S A. 2024 Jun 25;121(26):e2318761121. doi: 10.1073/pnas.2318761121. Epub 2024 Jun 17.

本文引用的文献

1
Calditol-linked membrane lipids are required for acid tolerance in .
Proc Natl Acad Sci U S A. 2018 Dec 18;115(51):12932-12937. doi: 10.1073/pnas.1814048115. Epub 2018 Dec 5.
2
A phylogenomic and ecological analysis of the globally abundant Marine Group II archaea (Ca. Poseidoniales ord. nov.).
ISME J. 2019 Mar;13(3):663-675. doi: 10.1038/s41396-018-0282-y. Epub 2018 Oct 15.
5
Influence of ammonia oxidation rate on thaumarchaeal lipid composition and the TEX86 temperature proxy.
Proc Natl Acad Sci U S A. 2016 Jul 12;113(28):7762-7. doi: 10.1073/pnas.1518534113. Epub 2016 Jun 28.
6
Marine Group II Archaea, potentially important players in the global ocean carbon cycle.
Front Microbiol. 2015 Oct 13;6:1108. doi: 10.3389/fmicb.2015.01108. eCollection 2015.
7
Confounding effects of oxygen and temperature on the TEX86 signature of marine Thaumarchaeota.
Proc Natl Acad Sci U S A. 2015 Sep 1;112(35):10979-84. doi: 10.1073/pnas.1501568112. Epub 2015 Aug 17.
8
Biosynthesis of archaeal membrane ether lipids.
Front Microbiol. 2014 Nov 26;5:641. doi: 10.3389/fmicb.2014.00641. eCollection 2014.
9
Are Marine Group II Euryarchaeota significant contributors to tetraether lipids in the ocean?
Proc Natl Acad Sci U S A. 2014 Oct 14;111(41):E4285. doi: 10.1073/pnas.1416176111. Epub 2014 Sep 19.
10
Reply to Schouten et al.: Marine Group II planktonic Euryarchaeota are significant contributors to tetraether lipids in the ocean.
Proc Natl Acad Sci U S A. 2014 Oct 14;111(41):E4286. doi: 10.1073/pnas.1416736111. Epub 2014 Sep 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验