Department of Earth System Science, Stanford University, Stanford, CA 94305.
Department of Geosciences, University of Oklahoma, Norman, OK 73019.
Proc Natl Acad Sci U S A. 2019 Nov 5;116(45):22505-22511. doi: 10.1073/pnas.1909306116. Epub 2019 Oct 7.
Glycerol dibiphytanyl glycerol tetraethers (GDGTs) are distinctive archaeal membrane-spanning lipids with up to eight cyclopentane rings and/or one cyclohexane ring. The number of rings added to the GDGT core structure can vary as a function of environmental conditions, such as changes in growth temperature. This physiological response enables cyclic GDGTs preserved in sediments to be employed as proxies for reconstructing past global and regional temperatures and to provide fundamental insights into ancient climate variability. Yet, confidence in GDGT-based paleotemperature proxies is hindered by uncertainty concerning the archaeal communities contributing to GDGT pools in modern environments and ambiguity in the environmental and physiological factors that affect GDGT cyclization in extant archaea. To properly constrain these uncertainties, a comprehensive understanding of GDGT biosynthesis is required. Here, we identify 2 GDGT ring synthases, GrsA and GrsB, essential for GDGT ring formation in Both proteins are radical S-adenosylmethionine proteins, indicating that GDGT cyclization occurs through a free radical mechanism. In addition, we demonstrate that GrsA introduces rings specifically at the C-7 position of the core GDGT lipid, while GrsB cyclizes at the C-3 position, suggesting that cyclization patterns are differentially controlled by 2 separate enzymes and potentially influenced by distinct environmental factors. Finally, phylogenetic analyses of the Grs proteins reveal that marine Thaumarchaeota, and not Euryarchaeota, are the dominant source of cyclized GDGTs in open ocean settings, addressing a major source of uncertainty in GDGT-based paleotemperature proxy applications.
甘油二植烷甘油四醚 (GDGTs) 是一种独特的细菌膜跨越脂质,具有多达八个环戊烷环和/或一个环己烷环。GDGT 核心结构中添加的环数可以根据环境条件而变化,例如生长温度的变化。这种生理反应使沉积物中保存的环状 GDGT 能够作为重建过去全球和区域温度的指标,并为古代气候变化提供基本的见解。然而,基于 GDGT 的古温度代用指标的可信度受到现代环境中对 GDGT 池有贡献的古细菌群落的不确定性以及影响现存古细菌 GDGT 环化的环境和生理因素的模糊性的阻碍。为了正确限制这些不确定性,需要对 GDGT 的生物合成有全面的了解。在这里,我们确定了 2 种 GDGT 环合酶,GrsA 和 GrsB,它们对 GDGT 环形成至关重要。这两种蛋白质都是自由基 S-腺苷甲硫氨酸蛋白,表明 GDGT 环化是通过自由基机制发生的。此外,我们证明 GrsA 专门在核心 GDGT 脂质的 C-7 位置引入环,而 GrsB 在 C-3 位置环化,这表明环化模式由 2 种不同的酶差异控制,并且可能受到不同环境因素的影响。最后,对 Grs 蛋白的系统发育分析表明,海洋 Thaumarchaeota 而不是 Euryarchaeota 是开阔海洋环境中环化 GDGT 的主要来源,解决了 GDGT 基古温度代用指标应用中的一个主要不确定性来源。