Hurley Sarah J, Elling Felix J, Könneke Martin, Buchwald Carolyn, Wankel Scott D, Santoro Alyson E, Lipp Julius Sebastian, Hinrichs Kai-Uwe, Pearson Ann
Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA 02138;
Organic Geochemistry Group, MARUM-Center for Marine Environmental Sciences, University of Bremen, Bremen 28359, Germany; Department of Geosciences, University of Bremen, Bremen 28359, Germany;
Proc Natl Acad Sci U S A. 2016 Jul 12;113(28):7762-7. doi: 10.1073/pnas.1518534113. Epub 2016 Jun 28.
Archaeal membrane lipids known as glycerol dibiphytanyl glycerol tetraethers (GDGTs) are the basis of the TEX86 paleotemperature proxy. Because GDGTs preserved in marine sediments are thought to originate mainly from planktonic, ammonia-oxidizing Thaumarchaeota, the basis of the correlation between TEX86 and sea surface temperature (SST) remains unresolved: How does TEX86 predict surface temperatures, when maximum thaumarchaeal activity occurs below the surface mixed layer and TEX86 does not covary with in situ growth temperatures? Here we used isothermal studies of the model thaumarchaeon Nitrosopumilus maritimus SCM1 to investigate how GDGT composition changes in response to ammonia oxidation rate. We used continuous culture methods to avoid potential confounding variables that can be associated with experiments in batch cultures. The results show that the ring index scales inversely (R(2) = 0.82) with ammonia oxidation rate (ϕ), indicating that GDGT cyclization depends on available reducing power. Correspondingly, the TEX86 ratio decreases by an equivalent of 5.4 °C of calculated temperature over a 5.5 fmol·cell(-1)·d(-1) increase in ϕ. This finding reconciles other recent experiments that have identified growth stage and oxygen availability as variables affecting TEX86 Depth profiles from the marine water column show minimum TEX86 values at the depth of maximum nitrification rates, consistent with our chemostat results. Our findings suggest that the TEX86 signal exported from the water column is influenced by the dynamics of ammonia oxidation. Thus, the global TEX86-SST calibration potentially represents a composite of regional correlations based on nutrient dynamics and global correlations based on archaeal community composition and temperature.
被称为甘油二植烷甘油四醚(GDGTs)的古菌膜脂是TEX86古温度指标的基础。由于保存在海洋沉积物中的GDGTs被认为主要源自浮游的、氨氧化奇古菌,TEX86与海表面温度(SST)之间相关性的基础仍未得到解决:当最大奇古菌活性发生在表面混合层以下且TEX86与原位生长温度不共变时,TEX86如何预测表面温度?在这里,我们利用对模式奇古菌嗜盐亚硝化单胞菌SCM1的等温研究,来探究GDGT组成如何响应氨氧化速率而变化。我们采用连续培养方法,以避免可能与分批培养实验相关的潜在混杂变量。结果表明,环指数与氨氧化速率(ϕ)呈反比(R(2)=0.82),这表明GDGT环化取决于可用的还原力。相应地,在ϕ增加5.5 fmol·细胞(-1)·天(-1)的情况下,TEX86比率下降的幅度相当于计算温度下降5.4°C。这一发现与最近其他一些实验结果相吻合,这些实验已将生长阶段和氧可用性确定为影响TEX86的变量。来自海洋水柱的深度剖面显示,在最大硝化速率深度处TEX86值最低,这与我们的恒化器结果一致。我们的研究结果表明,从水柱输出的TEX86信号受氨氧化动态的影响。因此,全球TEX86 - SST校准可能代表了基于营养动态的区域相关性与基于古菌群落组成和温度的全球相关性的综合。