Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado, USA.
Department of Earth System Science, Stanford University, Stanford, California, USA.
Mol Microbiol. 2024 May;121(5):882-894. doi: 10.1111/mmi.15240. Epub 2024 Feb 19.
The sole unifying feature of the incredibly diverse Archaea is their isoprenoid-based ether-linked lipid membranes. Unique lipid membrane composition, including an abundance of membrane-spanning tetraether lipids, impart resistance to extreme conditions. Many questions remain, however, regarding the synthesis and modification of tetraether lipids and how dynamic changes to archaeal lipid membrane composition support hyperthermophily. Tetraether membranes, termed glycerol dibiphytanyl glycerol tetraethers (GDGTs), are generated by tetraether synthase (Tes) by joining the tails of two bilayer lipids known as archaeol. GDGTs are often further specialized through the addition of cyclopentane rings by GDGT ring synthase (Grs). A positive correlation between relative GDGT abundance and entry into stationary phase growth has been observed, but the physiological impact of inhibiting GDGT synthesis has not previously been reported. Here, we demonstrate that the model hyperthermophile Thermococcus kodakarensis remains viable when Tes (TK2145) or Grs (TK0167) are deleted, permitting phenotypic and lipid analyses at different temperatures. The absence of cyclopentane rings in GDGTs does not impact growth in T. kodakarensis, but an overabundance of rings due to ectopic Grs expression is highly fitness negative at supra-optimal temperatures. In contrast, deletion of Tes resulted in the loss of all GDGTs, cyclization of archaeol, and loss of viability upon transition to the stationary phase in this model archaea. These results demonstrate the critical roles of highly specialized, dynamic, isoprenoid-based lipid membranes for archaeal survival at high temperatures.
唯一将非常多样化的古菌统一起来的特征是它们基于异戊二烯的醚键连接的脂膜。独特的脂膜组成,包括大量的跨膜四醚脂质,赋予了它们对极端条件的抗性。然而,关于四醚脂质的合成和修饰以及古菌脂膜组成的动态变化如何支持高温嗜热仍然存在许多问题。四醚膜,称为甘油二双植烷甘油四醚 (GDGTs),是由四醚合酶 (Tes) 通过连接两种双层脂质(称为 archaeol)的尾部生成的。GDGTs 通常通过 GDGT 环合酶 (Grs) 进一步通过添加环戊烷环来专门化。已经观察到相对 GDGT 丰度与进入静止期生长之间存在正相关,但以前没有报道过抑制 GDGT 合成的生理影响。在这里,我们证明模型嗜热菌 Thermococcus kodakarensis 在 Tes (TK2145) 或 Grs (TK0167) 缺失时仍然具有活力,允许在不同温度下进行表型和脂质分析。GDGTs 中没有环戊烷环不会影响 T. kodakarensis 的生长,但由于异位 Grs 表达导致环过多,在超最佳温度下对适应性具有高度负影响。相比之下,Tes 的缺失导致所有 GDGTs 的丢失、archaeol 的环化以及在该模型古菌中进入静止期时的活力丧失。这些结果表明,高度专门化、动态、基于异戊二烯的脂膜对于古菌在高温下的生存至关重要。