Suppr超能文献

一种克隆表达生物标志物与肺癌死亡率相关。

A clonal expression biomarker associates with lung cancer mortality.

机构信息

Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, Paul O'Gorman Building, London, UK.

Bill Lyons Informatics Centre, University College London Cancer Institute, Paul O'Gorman Building, London, UK.

出版信息

Nat Med. 2019 Oct;25(10):1540-1548. doi: 10.1038/s41591-019-0595-z. Epub 2019 Oct 7.

Abstract

An aim of molecular biomarkers is to stratify patients with cancer into disease subtypes predictive of outcome, improving diagnostic precision beyond clinical descriptors such as tumor stage. Transcriptomic intratumor heterogeneity (RNA-ITH) has been shown to confound existing expression-based biomarkers across multiple cancer types. Here, we analyze multi-region whole-exome and RNA sequencing data for 156 tumor regions from 48 patients enrolled in the TRACERx study to explore and control for RNA-ITH in non-small cell lung cancer. We find that chromosomal instability is a major driver of RNA-ITH, and existing prognostic gene expression signatures are vulnerable to tumor sampling bias. To address this, we identify genes expressed homogeneously within individual tumors that encode expression modules of cancer cell proliferation and are often driven by DNA copy-number gains selected early in tumor evolution. Clonal transcriptomic biomarkers overcome tumor sampling bias, associate with survival independent of clinicopathological risk factors, and may provide a general strategy to refine biomarker design across cancer types.

摘要

分子生物标志物的一个目标是将癌症患者分为具有预测预后的疾病亚型,从而提高诊断精度,超越肿瘤分期等临床描述。转录组肿瘤内异质性(RNA-ITH)已被证明会混淆多种癌症类型中现有的基于表达的生物标志物。在这里,我们分析了 TRACERx 研究中 48 名患者的 156 个肿瘤区域的多区域全外显子组和 RNA 测序数据,以探索和控制非小细胞肺癌中的 RNA-ITH。我们发现染色体不稳定性是 RNA-ITH 的主要驱动因素,并且现有的预后基因表达特征容易受到肿瘤取样偏差的影响。为了解决这个问题,我们确定了在单个肿瘤内均匀表达的基因,这些基因编码癌症细胞增殖的表达模块,并且通常由肿瘤进化早期选择的 DNA 拷贝数增益驱动。克隆转录组生物标志物克服了肿瘤取样偏差,与临床病理危险因素无关的生存相关,并且可能为跨癌症类型改进生物标志物设计提供一种通用策略。

相似文献

1
A clonal expression biomarker associates with lung cancer mortality.
Nat Med. 2019 Oct;25(10):1540-1548. doi: 10.1038/s41591-019-0595-z. Epub 2019 Oct 7.
2
Tracking the Evolution of Non-Small-Cell Lung Cancer.
N Engl J Med. 2017 Jun 1;376(22):2109-2121. doi: 10.1056/NEJMoa1616288. Epub 2017 Apr 26.
3
An algorithm to quantify intratumor heterogeneity based on alterations of gene expression profiles.
Commun Biol. 2020 Sep 11;3(1):505. doi: 10.1038/s42003-020-01230-7.
4
Single-Cell DNA Sequencing Reveals Punctuated and Gradual Clonal Evolution in Hepatocellular Carcinoma.
Gastroenterology. 2022 Jan;162(1):238-252. doi: 10.1053/j.gastro.2021.08.052. Epub 2021 Sep 2.
5
Spatial and temporal clonal evolution of intrahepatic cholangiocarcinoma.
J Hepatol. 2018 Jul;69(1):89-98. doi: 10.1016/j.jhep.2018.02.029. Epub 2018 Mar 16.
6
DNA methylation intratumor heterogeneity in localized lung adenocarcinomas.
Oncotarget. 2017 Mar 28;8(13):21994-22002. doi: 10.18632/oncotarget.15777.
8
Systematic evaluation of the prognostic impact and intratumour heterogeneity of clear cell renal cell carcinoma biomarkers.
Eur Urol. 2014 Nov;66(5):936-48. doi: 10.1016/j.eururo.2014.06.053. Epub 2014 Jul 19.
9
Genetic and epigenetic intratumor heterogeneity impacts prognosis of lung adenocarcinoma.
Nat Commun. 2020 May 18;11(1):2459. doi: 10.1038/s41467-020-16295-5.
10
Intratumor heterogeneity: A new perspective on colorectal cancer research.
Cancer Med. 2020 Oct;9(20):7637-7645. doi: 10.1002/cam4.3323. Epub 2020 Aug 27.

引用本文的文献

3
Epigenetic regulators combined with tumour immunotherapy: current status and perspectives.
Clin Epigenetics. 2025 Mar 21;17(1):51. doi: 10.1186/s13148-025-01856-6.
4
Tumour-wide RNA splicing aberrations generate actionable public neoantigens.
Nature. 2025 Mar;639(8054):463-473. doi: 10.1038/s41586-024-08552-0. Epub 2025 Feb 19.
5
Integrins as Key Mediators of Metastasis.
Int J Mol Sci. 2025 Jan 22;26(3):904. doi: 10.3390/ijms26030904.
6
Refining biomarker design in light of cancer evolution.
Nat Cancer. 2025 Jan;6(1):20-21. doi: 10.1038/s43018-024-00884-0.
7
9
In vivo models of subclonal oncogenesis and dependency in hematopoietic malignancy.
Cancer Cell. 2024 Nov 11;42(11):1955-1969.e7. doi: 10.1016/j.ccell.2024.10.009.
10
Genomic, Epigenomic, and Transcriptomic Inter- and Intratumor Heterogeneity in Desmoid Tumors.
Clin Cancer Res. 2025 Jan 6;31(1):205-216. doi: 10.1158/1078-0432.CCR-24-1240.

本文引用的文献

1
Neoantigen-directed immune escape in lung cancer evolution.
Nature. 2019 Mar;567(7749):479-485. doi: 10.1038/s41586-019-1032-7. Epub 2019 Mar 20.
2
Signatures of T cell dysfunction and exclusion predict cancer immunotherapy response.
Nat Med. 2018 Oct;24(10):1550-1558. doi: 10.1038/s41591-018-0136-1. Epub 2018 Aug 20.
3
Phenotype molding of stromal cells in the lung tumor microenvironment.
Nat Med. 2018 Aug;24(8):1277-1289. doi: 10.1038/s41591-018-0096-5. Epub 2018 Jul 9.
4
SpatialDE: identification of spatially variable genes.
Nat Methods. 2018 May;15(5):343-346. doi: 10.1038/nmeth.4636. Epub 2018 Mar 19.
6
Efficient Generation of Transcriptomic Profiles by Random Composite Measurements.
Cell. 2017 Nov 30;171(6):1424-1436.e18. doi: 10.1016/j.cell.2017.10.023. Epub 2017 Nov 16.
7
Comprehensive Intrametastatic Immune Quantification and Major Impact of Immunoscore on Survival.
J Natl Cancer Inst. 2018 Jan 1;110(1). doi: 10.1093/jnci/djx123.
8
A pathology atlas of the human cancer transcriptome.
Science. 2017 Aug 18;357(6352). doi: 10.1126/science.aan2507.
9
Integrative clinical genomics of metastatic cancer.
Nature. 2017 Aug 17;548(7667):297-303. doi: 10.1038/nature23306. Epub 2017 Aug 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验