文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

利用人工智能增强的心电图分析改变动脉粥样硬化性心血管疾病的人群健康筛查:机遇与挑战。

Transforming Population Health Screening for Atherosclerotic Cardiovascular Disease with AI-Enhanced ECG Analytics: Opportunities and Challenges.

作者信息

Biswas Dhruva, Aminorroaya Arya, Croon Philip M, Batinica Bruno, Pedroso Aline F, Khera Rohan

机构信息

Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA.

Cardiovascular Data Science (CarDS) Lab, Yale School of Medicine, 195 Church Street, 6th Floor, New Haven, CT, 06510, USA.

出版信息

Curr Atheroscler Rep. 2025 Sep 1;27(1):86. doi: 10.1007/s11883-025-01337-4.


DOI:10.1007/s11883-025-01337-4
PMID:40888973
Abstract

PURPOSE OF REVIEW: To define the emerging role of artificial intelligence-enhanced electrocardiography (AI-ECG) in advancing population-level screening for atherosclerotic cardiovascular disease (ASCVD), we provide a comprehensive overview of its role in predicting major adverse cardiovascular events and detecting subclinical coronary artery disease. We also outline the clinical, methodological, and implementation challenges that must be addressed for widespread adoption. RECENT FINDINGS: State-of-the-art AI-ECG models exhibit high accuracy, correctly re-classifying patients deemed 'low risk' by traditional risk models. They also compress the prediction horizon from a decade to just a few years, suggesting opportunities for early detection and more personalized intervention. However, validation remains largely retrospective and hospital-based, with referral and ascertainment biases limiting generalizability. There is no evidence thus far for an externally validated AI-ECG model that can either define or improve the detection of ASCVD outcomes independent of standard risk factors. AI-enhanced ECG interpretation has the potential to transform a universal, inexpensive test into a powerful screening and prognostication tool for ASCVD. Realizing this potential will require prospective studies to confirm that AI-ECG-guided ASCVD screening improves patient outcomes across diverse populations. Earning trust among physicians and patients will require addressing key logistical challenges, including robust data governance, seamless workflow integration, and ongoing performance monitoring. Technological innovation, such as algorithms for single-lead ECGs on wearable and portable devices, could help enable the scalability needed for global impact on cardiovascular health.

摘要

综述目的:为了明确人工智能增强心电图(AI-ECG)在推进动脉粥样硬化性心血管疾病(ASCVD)人群水平筛查中的新作用,我们全面概述了其在预测主要不良心血管事件和检测亚临床冠状动脉疾病方面的作用。我们还概述了广泛应用必须解决的临床、方法学和实施方面的挑战。 最新发现:最先进的AI-ECG模型表现出高准确性,能够正确地对传统风险模型判定为“低风险”的患者进行重新分类。它们还将预测时间范围从十年压缩到短短几年,这为早期检测和更个性化的干预提供了机会。然而,验证在很大程度上仍然是回顾性的且基于医院,转诊和确诊偏倚限制了其普遍性。目前尚无证据表明存在一种经过外部验证的AI-ECG模型,能够独立于标准风险因素来定义或改善ASCVD结局的检测。人工智能增强的心电图解读有潜力将一种通用、廉价的检测转变为一种强大的ASCVD筛查和预后工具。要实现这一潜力,需要进行前瞻性研究,以确认AI-ECG指导的ASCVD筛查能改善不同人群的患者结局。要赢得医生和患者的信任,需要解决关键的后勤挑战,包括强大的数据治理、无缝的工作流程整合以及持续的性能监测。技术创新,如可穿戴和便携式设备上单导联心电图的算法,有助于实现对心血管健康产生全球影响所需的可扩展性。

相似文献

[1]
Transforming Population Health Screening for Atherosclerotic Cardiovascular Disease with AI-Enhanced ECG Analytics: Opportunities and Challenges.

Curr Atheroscler Rep. 2025-9-1

[2]
Prescription of Controlled Substances: Benefits and Risks

2025-1

[3]
Signs and symptoms to determine if a patient presenting in primary care or hospital outpatient settings has COVID-19.

Cochrane Database Syst Rev. 2022-5-20

[4]
Artificial intelligence for detecting keratoconus.

Cochrane Database Syst Rev. 2023-11-15

[5]
Artificial intelligence for diagnosing exudative age-related macular degeneration.

Cochrane Database Syst Rev. 2024-10-17

[6]
AI in Medical Questionnaires: Innovations, Diagnosis, and Implications.

J Med Internet Res. 2025-6-23

[7]
[Artificial intelligence-enhanced ECG interpretation: a new era for electrocardiography?].

G Ital Cardiol (Rome). 2025-9

[8]
Evaluating the Implications of a Coronary Artery Calcium Score of Zero (CAC = 0) in Modern Risk Prediction: Is Zero Truly Zero?

Cureus. 2025-7-22

[9]
Interventions to improve safe and effective medicines use by consumers: an overview of systematic reviews.

Cochrane Database Syst Rev. 2014-4-29

[10]
Are Artificial Intelligence Models Reliable for Clinical Application in Pediatric Fracture Detection on Radiographs? A Systematic Review and Meta-analysis.

Clin Orthop Relat Res. 2025-8-20

本文引用的文献

[1]
Development and multinational validation of an ensemble deep learning algorithm for detecting and predicting structural heart disease using noisy single-lead electrocardiograms.

Eur Heart J Digit Health. 2025-4-10

[2]
Racial and ethnic disparities in aortic stenosis within a universal healthcare system characterized by natural language processing for targeted intervention.

Eur Heart J Digit Health. 2025-3-18

[3]
Deep learning on electrocardiogram waveforms to stratify risk of obstructive stable coronary artery disease.

Eur Heart J Digit Health. 2025-3-18

[4]
Effects of Tirzepatide in Type 2 Diabetes: Individual Variation and Relationship to Cardiometabolic Outcomes.

J Am Coll Cardiol. 2025-5-20

[5]
Artificial Intelligence-Enabled Prediction of Heart Failure Risk From Single-Lead Electrocardiograms.

JAMA Cardiol. 2025-4-16

[6]
Harnessing Artificial Intelligence for Innovation in Interventional Cardiovascular Care.

J Soc Cardiovasc Angiogr Interv. 2025-3-18

[7]
Racial and Ethnic Differences in Long-Term Cardiovascular Mortality Among Women and Men From the CAC Consortium.

JACC Cardiovasc Imaging. 2025-6

[8]
The Lancet Commission on rethinking coronary artery disease: moving from ischaemia to atheroma.

Lancet. 2025-4-12

[9]
Electronic Provider Notification to Facilitate the Recognition and Management of Severe Aortic Stenosis: A Randomized Clinical Trial.

Circulation. 2025-5-27

[10]
Ensemble Deep Learning Algorithm for Structural Heart Disease Screening Using Electrocardiographic Images: PRESENT SHD.

J Am Coll Cardiol. 2025-4-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索