Department of Orthopaedic Surgery, David Geffen School of Medicine at University of California Los Angeles (UCLA), Santa Monica, CA.
Department of Bioengineering, University of California Los Angeles (UCLA), Los Angeles, CA.
Spine (Phila Pa 1976). 2020 Mar 15;45(6):E305-E311. doi: 10.1097/BRS.0000000000003279.
A controlled, interventional animal study.
Spinal implant infection (SII) is a devastating complication. The objective of this study was to evaluate the efficacy of a novel implant coating that has both a passive antibiotic elution and an active-release mechanism triggered in the presence of bacteria, using an in vivo mouse model of SII.
Current methods to minimize the frequency of SII include local antibiotic therapy (vancomycin powder), betadine irrigation, silver nanoparticles, and passive release from antibiotic-loaded poly(methyl methacrylate) cement beads, all of which have notable weaknesses. A novel implant coating has been developed to address some of these limitations but has not been tested in the environment of a SII.
A biodegradable coating using branched poly(ethylene glycol)-poly(propylene sulfide) (PEG-PPS) polymer was designed to deliver antibiotics. The in vivo performance of this coating was tested in the delivery of either vancomycin or tigecycline in a previously established mouse model of SII. Noninvasive bioluminescence imaging was used to quantify the bacterial burden, and implant sonication was used to determine bacterial colony-forming units (CFUs) from the implant and surrounding bone and soft tissue.
The PEG-PPS-vancomycin coating significantly lowered the infection burden from postoperative day 3 onwards (P < 0.05), whereas PEG-PPS-tigecycline only decreased the infection on postoperative day 5 to 10 (P < 0.05). CFUs were lower on PEG-PPS-vancomycin pins than PEG-PPS-tigecycline and PEG-PPS pins alone on both the implants (2.4 × 10, 8.5 × 10, and 1.0 × 10 CFUs, respectively) and surrounding bone and soft tissue (1.3 × 10, 4.8 × 10, and 5.4 × 10 CFUs, respectively) (P < 0.05).
The biodegradable PEG-PPS coating demonstrates promise in decreasing bacterial burden and preventing SII. The vancomycin coating outperformed the tigecycline coating in this model compared to prior work in arthroplasty models, highlighting the uniqueness of the paraspinal infection microenvironment.
N/A.
一项对照、干预性动物研究。
脊柱植入物感染(SII)是一种破坏性的并发症。本研究的目的是评估一种新型植入物涂层的疗效,该涂层具有被动抗生素洗脱和在细菌存在时触发的主动释放机制,使用 SII 的体内小鼠模型进行评估。
目前,为了最大限度地减少 SII 的发生率,包括局部抗生素治疗(万古霉素粉末)、洗必泰冲洗、纳米银和从载抗生素的聚甲基丙烯酸甲酯水泥珠中被动释放,所有这些方法都有明显的缺点。已经开发了一种新型植入物涂层来解决其中的一些局限性,但尚未在 SII 环境中进行测试。
使用支化聚(乙二醇)-聚(丙硫醚)(PEG-PPS)聚合物设计了一种可生物降解的涂层,以输送抗生素。在先前建立的 SII 小鼠模型中,测试了这种涂层在输送万古霉素或替加环素方面的体内性能。非侵入性生物发光成像用于定量细菌负荷,植入物超声处理用于确定植入物和周围骨骼和软组织中的细菌菌落形成单位(CFU)。
PEG-PPS-万古霉素涂层从术后第 3 天开始显著降低感染负担(P<0.05),而 PEG-PPS-替加环素仅在术后第 5 天至 10 天降低感染(P<0.05)。PEG-PPS-万古霉素针的 CFU 低于 PEG-PPS-替加环素和 PEG-PPS 针单独使用时的 CFU,无论是在植入物(2.4×10、8.5×10 和 1.0×10 CFU)还是周围骨骼和软组织(1.3×10、4.8×10 和 5.4×10 CFU)(P<0.05)。
可生物降解的 PEG-PPS 涂层在降低细菌负荷和预防 SII 方面显示出前景。与先前在关节置换模型中的工作相比,万古霉素涂层在该模型中的表现优于替加环素涂层,突出了脊柱旁感染微环境的独特性。
无。