Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA.
J Chem Phys. 2019 Oct 7;151(13):134107. doi: 10.1063/1.5121749.
We extend the coupled-cluster method to correlated quantum dynamics of both closed and open systems at finite temperatures using the thermofield formalism. The approach expresses the time-dependent density matrix in an exponential ansatz and describes time-evolution along the Keldysh path contour. A distinct advantage of the approach is exact trace-preservation as a function of time, ensuring conservation of probability and particle number. Furthermore, the method avoids the computation of correlated bra-states, simplifying the computational implementation. We develop the method in a thermal quasiparticle representation, which allows seamless connection to the projection method and diagrammatic techniques of the traditional coupled-cluster formalism. For comparison, we also apply the thermofield framework to the density-matrix renormalization-group method to obtain reference results for closed and open systems at finite temperature. We test the singles and doubles approximation to the density-matrix coupled-cluster method on the correlated electronic dynamics of the single-impurity Anderson model, demonstrating that the new method successfully captures the correlated dynamics of both closed systems at finite temperature and driven-dissipative open systems. This encouraging performance motivates future applications to nonequilibrium quantum many-body dynamics in realistic systems.
我们使用热场形式主义将耦合簇方法扩展到有限温度下封闭和开放系统的相关量子动力学。该方法以指数假设表示时变密度矩阵,并沿着 Keldysh 路径轮廓描述时间演化。该方法的一个明显优势是作为时间函数的精确迹保留,确保概率和粒子数的守恒。此外,该方法避免了相关 bra 态的计算,简化了计算实现。我们在热准粒子表示中发展了该方法,这允许与传统耦合簇形式主义的投影方法和图技术无缝连接。为了进行比较,我们还将热场框架应用于密度矩阵重整化群方法,以获得有限温度下封闭和开放系统的参考结果。我们在单杂质安德森模型的相关电子动力学上对密度矩阵耦合簇方法的单双激发近似进行了测试,结果表明新方法成功地捕捉到了有限温度下封闭系统和驱动耗散开放系统的相关动力学。这一令人鼓舞的性能激励了未来在实际系统中对非平衡量子多体动力学的应用。