Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48105, United States.
Department of Physics and Astronomy, Rice University, Houston, Texas 77005, United States.
J Phys Chem A. 2023 Apr 13;127(14):3063-3071. doi: 10.1021/acs.jpca.2c08418. Epub 2023 Apr 5.
Wave function methods have offered a robust, systematically improvable means to study ground-state properties in quantum many-body systems. Theories like coupled cluster and their derivatives provide highly accurate approximations to the energy landscape at a reasonable computational cost. Analogues of such methods to study thermal properties, though highly desirable, have been lacking because evaluating thermal properties involve a trace over the entire Hilbert space, which is a formidable task. Besides, excited-state theories are generally not as well studied as ground-state ones. In this mini-review, we present an overview of a finite-temperature wave function formalism based on thermofield dynamics to overcome these difficulties. Thermofield dynamics allows us to map the equilibrium thermal density matrix to a pure state, i.e., a single wave function, albeit in an expanded Hilbert space. Ensemble averages become expectation values over this so-called thermal state. Around this thermal state, we have developed a procedure to generalize ground-state wave function theories to finite temperatures. As explicit examples, we highlight formulations of mean-field, configuration interaction, and coupled cluster theories for thermal properties of Fermions in the grand-canonical ensemble. To assess the quality of these approximations, we also show benchmark studies for the one-dimensional Hubbard model, while comparing against exact results. We will see that the thermal methods perform similarly to their ground-state counterparts, while merely adding a prefactor to the asymptotic computational cost. They also inherit all the properties, good or bad, from the ground-state methods, signifying the robustness of our formalism and the scope for future development.
波函数方法为研究量子多体系统的基态性质提供了一种强大、可系统改进的方法。耦合簇及其衍生理论等理论以合理的计算成本为代价,提供了对能量景观的高度精确逼近。尽管研究热性质的类似方法非常理想,但由于评估热性质涉及对整个希尔伯特空间的迹运算,这是一项艰巨的任务,因此一直缺乏这种方法。此外,激发态理论一般不如基态理论研究得那么充分。在这个迷你综述中,我们介绍了一种基于热力学场动力学的有限温度波函数形式主义,以克服这些困难。热力学场动力学允许我们将平衡热密度矩阵映射到纯态,即单个波函数,尽管在扩展的希尔伯特空间中。系综平均值成为这个所谓的热态的期望值。在这个热态周围,我们已经开发了一种将基态波函数理论推广到有限温度的方法。作为具体的例子,我们强调了在巨正则系综中用于研究费米子热性质的平均场、组态相互作用和耦合簇理论的公式。为了评估这些近似的质量,我们还展示了一维哈伯德模型的基准研究,同时与精确结果进行了比较。我们将看到,热方法的性能与它们的基态对应方法相似,而只是在渐近计算成本上增加了一个因子。它们还继承了基态方法的所有特性,无论是好是坏,这表明我们的形式主义是稳健的,并且有进一步发展的空间。