Departamento de Física de la Materia Condensada, Centro Atómico Constituyentes, CNEA, Av. Gral. Paz 1499, 1650 Pcia. de Buenos Aires, Argentina and Instituto de Nanociencia y Nanotecnología, CONICET-CNEA, CAC, Buenos Aires, Argentina.
J Chem Phys. 2019 Oct 7;151(13):131101. doi: 10.1063/1.5124374.
The well-known Wall theorem states a simple and precise relation among temperature, pressure, and density of a fluid at contact with a confining hard wall in thermodynamic equilibrium. In this Communication, we develop an extension of the Wall theorem to out-of-equilibrium conditions, providing an exact relation between pressure, density, and temperature at the wall, valid for strong nonequilibrium situations. We derive analytically this nonequilibrium Wall theorem for stationary states and validate it with nonequilibrium event-driven molecular-dynamics simulations. We compare the analytical expression with simulations by direct evaluation of temperature, density, and pressure on the wall of a nanoconfined liquid under stationary flow. This is done for linear regime, medium and very strong out-of-equilibrium conditions, presenting viscous heating and heat transport. The agreement between theory and simulation is excellent, allowing for a conclusive verification. In addition, we explore the degree of accuracy of using the equilibrium Wall theorem and different expressions for the local temperature, employed in nonequilibrium molecular-dynamics simulations.
著名的 Wall 定理描述了处于热力学平衡态的流体与约束硬壁接触时的温度、压力和密度之间的简单而精确的关系。在本通讯中,我们将 Wall 定理扩展到非平衡条件,给出了壁面处压力、密度和温度之间的精确关系,该关系在强非平衡情况下有效。我们为稳态推导了这个非平衡的 Wall 定理,并通过非平衡事件驱动的分子动力学模拟进行了验证。我们通过直接在稳态流动下纳米受限液体壁上评估温度、密度和压力,将解析表达式与模拟进行了比较。我们针对线性区域、中等和非常强的非平衡条件进行了研究,展示了粘性加热和热传递。理论和模拟之间的一致性非常好,允许进行结论性验证。此外,我们还探索了在非平衡分子动力学模拟中使用平衡的 Wall 定理和局部温度的不同表达式的准确性程度。