Suppr超能文献

预测前置胎盘患者严重产后出血的风险模型:一项单中心回顾性研究。

A risk model to predict severe postpartum hemorrhage in patients with placenta previa: a single-center retrospective study.

作者信息

Chen Cheng, Liu Xiaoyan, Chen Dan, Huang Song, Yan Xiaoli, Liu Heying, Chang Qing, Liang Zhiqing

机构信息

Department of Gynecology and Obstetrics, the First Affiliated Hospital, Army, Military Medical University, Chongqing 400038, China.

出版信息

Ann Palliat Med. 2019 Nov;8(5):611-621. doi: 10.21037/apm.2019.09.04. Epub 2019 Sep 29.

Abstract

BACKGROUND

The study aimed to establish a predictive risk model for severe postpartum hemorrhage in placenta previa using clinical and placental ultrasound imaging performed prior to delivery.

METHODS

Postpartum hemorrhage patients were retrospectively enrolled. Severe postpartum hemorrhage was defined as exceeding 1,500 mL. Data collected included clinical and placental ultrasound images.

RESULTS

Age of pregnancy, time of delivery, time of miscarriage, history of vaginal delivery, gestational weeks at pregnancy termination, depth of placenta invading the uterine muscle wall were independent risk factors for severe postpartum hemorrhage in placenta previa. A model to predict severe postpartum hemorrhage in placenta previa was established: P=Log(Y/1-Y), where Y =-6.942 + 0.075 X1 (age) +1.531 X2 (times of delivery) + 0.223 X3 (time of miscarriage) - 3.557X4 (vaginal delivery: 1 for yes, 0 for no) + 1.753 X5 (0 for <37 weeks, 1 for ≥37 weeks) + 1.574 X6 (Depth of placenta invading uterine muscle wall: 0 for normal, 1 for placenta adhesion, 2 for placenta implantation, 3 for placenta penetration); discriminant boundary value of the prediction model (probability: P) was 0.268. Predicting sensitivity (Se) =0.765 (negative predicting accuracy rate), specificity (Sp) =0.900 (positive predicting accuracy rate), total accuracy rate =0.8000, and AUC of ROC curve =0.840.

CONCLUSIONS

The risk prediction model which had clinical and ultrasound imaging information prior to delivery had a high decision accuracy. However, before it can be used in the clinic, multicenter large-sample clinical studies should be performed to verify its accuracy and reliability.

摘要

背景

本研究旨在利用分娩前的临床及胎盘超声影像建立前置胎盘严重产后出血的预测风险模型。

方法

对产后出血患者进行回顾性纳入研究。严重产后出血定义为出血量超过1500毫升。收集的数据包括临床资料及胎盘超声图像。

结果

孕龄、分娩时间、流产次数、经阴道分娩史、终止妊娠时的孕周、胎盘侵入子宫肌层的深度是前置胎盘严重产后出血的独立危险因素。建立了预测前置胎盘严重产后出血的模型:P = Log(Y/1 - Y),其中Y = -6.942 + 0.075X1(年龄)+ 1.531X2(分娩次数)+ 0.223X3(流产次数)- 3.557X4(经阴道分娩:是为1,否为0)+ 1.753X5(孕周<37周为0,≥37周为1)+ 1.574X6(胎盘侵入子宫肌层深度:正常为0,胎盘粘连为1,胎盘植入为2,胎盘穿透为3);预测模型的判别界值(概率:P)为0.268。预测敏感性(Se)= 0.765(阴性预测准确率),特异性(Sp)= 0.900(阳性预测准确率),总准确率 = 0.8000,ROC曲线下面积(AUC)= 0.840。

结论

该包含分娩前临床及超声影像信息的风险预测模型具有较高的决策准确性。然而,在临床应用前,应开展多中心大样本临床研究以验证其准确性和可靠性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验