State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, PR China.
State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, PR China.
Talanta. 2020 Jan 15;207:120287. doi: 10.1016/j.talanta.2019.120287. Epub 2019 Aug 22.
The three-dimensional (3D) DNA nanostructure has been got much attention due to its excellent biocompatibility, enhanced structural stability, highly programmable and perfect cell-delivery performance. Here, a novel 3D DNA tetrahedron amplifier (DTA) has been developed for rapid and efficient mRNA imaging in living cells using target catalyzing spatial-confinement hairpin DNA assembly cascade reaction inside the DNA nanostructure. The DTA was constructed by assembling a DNA tetrahedron with four DNA strands at first, and then by assembling two metastable DNA hairpins H1 (Cy5) and H2 (Cy3) at specific locations of the DNA tetrahedron. In the presence of target mRNA, the catalyzed hairpin assembly (CHA) reaction on the DTA could be triggered and a H1-H2 duplexes nanostructure could be formed, which would obtain a significant fluorescence resonance energy transfer (FRET) signal, and release the target mRNA could trigger next H1-H2 duplexes formation. Due to the 3D DNA tetrahedral spatial-confinement effect, the circular reaction of DTA could achieve rapid and efficient amplification detection of target mRNA in living cells. Moreover, the DTA show excellent structural stability and non-cytotoxicity. This strategy presents a versatile method for the ultrasensitive detection of biomarkers in living system and gains a deeper development of the DNA nanostructures in biomedical functions.
由于其出色的生物相容性、增强的结构稳定性、高度可编程性和完美的细胞递送性能,三维 (3D) DNA 纳米结构受到了广泛关注。在这里,开发了一种新型的 3D DNA 四面体放大器 (DTA),用于在活细胞中快速有效地进行 mRNA 成像,方法是在 DNA 纳米结构内使用目标催化空间限制发夹 DNA 组装级联反应进行靶向催化。DTA 首先通过组装具有四个 DNA 链的 DNA 四面体来构建,然后通过在 DNA 四面体的特定位置组装两个亚稳 DNA 发夹 H1(Cy5)和 H2(Cy3)来构建。在存在靶 mRNA 的情况下,DTA 上的催化发夹组装 (CHA) 反应可以被触发,并且可以形成 H1-H2 双链体纳米结构,从而获得显著的荧光共振能量转移 (FRET) 信号,并且释放靶 mRNA 可以触发下一个 H1-H2 双链体的形成。由于 3D DNA 四面体的空间限制效应,DTA 的循环反应可以在活细胞中快速有效地扩增检测靶 mRNA。此外,DTA 表现出优异的结构稳定性和非细胞毒性。该策略为生物体系中生物标志物的超灵敏检测提供了一种通用方法,并为 DNA 纳米结构在生物医学功能中的进一步发展提供了新的思路。
ACS Appl Mater Interfaces. 2019-5-30
Theranostics. 2025-3-21
Acta Pharm Sin B. 2023-3