文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

可编程DNA纳米结构在刺激响应性药物递送和多模态生物传感方面的进展。

Advances in programmable DNA nanostructures enabling stimuli-responsive drug delivery and multimodal biosensing.

作者信息

Hong Yao, Ma Wenyue, Wang Meixia, Wang Hong-Hui

机构信息

State Key Laboratory of Chemo and Biosensing, College of Biology, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University Changsha 410082 P. R. China

出版信息

RSC Chem Biol. 2025 Jun 17. doi: 10.1039/d5cb00057b.


DOI:10.1039/d5cb00057b
PMID:40585578
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12203123/
Abstract

Recent advancements in DNA nanotechnology have unlocked unprecedented opportunities to address critical challenges in precision medicine, particularly in targeted drug delivery and biomedical imaging. Conventional nanocarriers often suffer from poor spatiotemporal control, suboptimal tumor accumulation, and non-specific biodistribution. To overcome these limitations, DNA-engineered nanostructures-including tile-based assemblies, origami frameworks, spherical nucleic acids, and stimuli-responsive hydrogels-have emerged as programmable platforms capable of dynamically responding to tumor microenvironmental cues (, pH, enzymatic activity, redox gradients) for triggered drug release. In this review, we comprehensively analyze these architectures with emphasis on their modular design strategies, stability improvements polyethylene glycol (PEG) functionalization, and multi-ligand targeting capabilities against cancer-specific biomarkers. In addition to therapeutic uses, these nanostructures also enable highly sensitive detection of circulating tumor DNA and exosomes using fluorescence resonance energy transfer (FRET) probes, electrochemiluminescence amplification circuits, SERS substrates, and cell variable region sensing technology. They also allow for real-time monitoring of dynamic intercellular interactions, overcoming the constraints of traditional sensing methods. This review systematically elaborates on the structural characteristics of DNA assemblies and summarizes the innovative applications of these nanostructures in multimodal detection, offering a more comprehensive perspective for early cancer diagnosis and precision treatment. Despite promising preclinical results, key translational challenges persist, including scalable manufacturing bottlenecks, immune compatibility optimization, and rigorous assessment of long-term nanotoxicity. Future integration with artificial intelligence-driven design tools may catalyze the development of next-generation theranostic nanodevices, ultimately bridging the gap between synthetic biology and clinical oncology.

摘要

DNA纳米技术的最新进展为解决精准医学中的关键挑战带来了前所未有的机遇,尤其是在靶向药物递送和生物医学成像方面。传统的纳米载体常常存在时空控制不佳、肿瘤蓄积不理想以及非特异性生物分布等问题。为了克服这些局限性,基于DNA工程的纳米结构——包括基于瓦片的组装体、折纸框架、球形核酸和刺激响应水凝胶——已成为可编程平台,能够动态响应肿瘤微环境线索(如pH值、酶活性、氧化还原梯度)以触发药物释放。在本综述中,我们全面分析了这些结构,重点关注其模块化设计策略、稳定性改进、聚乙二醇(PEG)功能化以及针对癌症特异性生物标志物的多配体靶向能力。除了治疗用途外,这些纳米结构还能够使用荧光共振能量转移(FRET)探针、电化学发光放大电路、表面增强拉曼光谱(SERS)底物和细胞可变区传感技术对循环肿瘤DNA和外泌体进行高度灵敏的检测。它们还允许对动态细胞间相互作用进行实时监测,克服了传统传感方法的局限性。本综述系统地阐述了DNA组装体的结构特征,并总结了这些纳米结构在多模态检测中的创新应用,为早期癌症诊断和精准治疗提供了更全面的视角。尽管临床前结果很有前景,但关键的转化挑战依然存在,包括可扩展制造瓶颈、免疫相容性优化以及对长期纳米毒性的严格评估。未来与人工智能驱动的设计工具相结合,可能会催化下一代治疗诊断纳米器件的开发,最终弥合合成生物学与临床肿瘤学之间的差距。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d377/12203123/7361a906851e/d5cb00057b-p3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d377/12203123/d242334bb480/d5cb00057b-f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d377/12203123/850cdbe4c572/d5cb00057b-f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d377/12203123/469ade33438b/d5cb00057b-f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d377/12203123/1ffbe92cc872/d5cb00057b-f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d377/12203123/3bf7b91f1eb1/d5cb00057b-f5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d377/12203123/85ad8fc5e85f/d5cb00057b-p1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d377/12203123/9f04ab5d2916/d5cb00057b-p2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d377/12203123/7361a906851e/d5cb00057b-p3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d377/12203123/d242334bb480/d5cb00057b-f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d377/12203123/850cdbe4c572/d5cb00057b-f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d377/12203123/469ade33438b/d5cb00057b-f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d377/12203123/1ffbe92cc872/d5cb00057b-f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d377/12203123/3bf7b91f1eb1/d5cb00057b-f5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d377/12203123/85ad8fc5e85f/d5cb00057b-p1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d377/12203123/9f04ab5d2916/d5cb00057b-p2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d377/12203123/7361a906851e/d5cb00057b-p3.jpg

相似文献

[1]
Advances in programmable DNA nanostructures enabling stimuli-responsive drug delivery and multimodal biosensing.

RSC Chem Biol. 2025-6-17

[2]
Prescription of Controlled Substances: Benefits and Risks

2025-1

[3]
Microswimmers That Flex: Advancing Microswimmers with Templated Assembly and Responsive DNA Nanostructures.

Acc Mater Res. 2025-7-14

[4]
4D-printed microdevices for spatiotemporal detection of ctDNA and miRNA in pancreatic cancer: an in-depth review.

Med Oncol. 2025-9-3

[5]
Gene hydrogel platforms for targeted skin therapy: bridging hereditary disorders, chronic wounds, and immune related skin diseases.

Front Drug Deliv. 2025-7-1

[6]
Nucleic Acid Nanocapsules as a New Platform to Deliver Therapeutic Nucleic Acids for Gene Regulation.

Acc Chem Res. 2025-7-1

[7]
Healthcare workers' informal uses of mobile phones and other mobile devices to support their work: a qualitative evidence synthesis.

Cochrane Database Syst Rev. 2024-8-27

[8]
Advancements and future perspectives of triphenylamine-based fluorescent probes in biomedical applications.

Acta Biomater. 2025-8

[9]
Hydrogel-driven innovations for targeted delivery, immune modulation, and tissue repair in thyroid cancer therapy.

Front Cell Dev Biol. 2025-7-25

[10]
Quantitative Chemical Imaging of Organelles.

Acc Chem Res. 2024-7-16

本文引用的文献

[1]
Developments in nanotechnology approaches for the treatment of solid tumors.

Exp Hematol Oncol. 2025-5-19

[2]
Advanced disease therapeutics using engineered living drug delivery systems.

Nanoscale. 2025-3-28

[3]
Engineering modular and tunable single-molecule sensors by decoupling sensing from signal output.

Nat Nanotechnol. 2025-2

[4]
Tetrahedral DNA Framework-Based Spherical Nucleic Acids for Efficient siRNA Delivery.

Angew Chem Int Ed Engl. 2025-1-27

[5]
Current nanocomposite advances for biomedical and environmental application diversity.

Med Res Rev. 2025-3

[6]
DNA hydrogels and their derivatives in biomedical engineering applications.

J Nanobiotechnology. 2024-8-29

[7]
DNA origami force probes illuminate T cell receptor forces at the immune synapse.

Nat Nanotechnol. 2024-11

[8]
Precise Preparation of Supramolecular Spherical Nucleic Acids for Nucleolin-Targeted Gene Delivery.

Angew Chem Int Ed Engl. 2024-12-2

[9]
Quantifying T cell receptor mechanics at membrane junctions using DNA origami tension sensors.

Nat Nanotechnol. 2024-11

[10]
A DNA robotic switch with regulated autonomous display of cytotoxic ligand nanopatterns.

Nat Nanotechnol. 2024-9

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索