Hong Yao, Ma Wenyue, Wang Meixia, Wang Hong-Hui
State Key Laboratory of Chemo and Biosensing, College of Biology, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University Changsha 410082 P. R. China
RSC Chem Biol. 2025 Jun 17. doi: 10.1039/d5cb00057b.
Recent advancements in DNA nanotechnology have unlocked unprecedented opportunities to address critical challenges in precision medicine, particularly in targeted drug delivery and biomedical imaging. Conventional nanocarriers often suffer from poor spatiotemporal control, suboptimal tumor accumulation, and non-specific biodistribution. To overcome these limitations, DNA-engineered nanostructures-including tile-based assemblies, origami frameworks, spherical nucleic acids, and stimuli-responsive hydrogels-have emerged as programmable platforms capable of dynamically responding to tumor microenvironmental cues (, pH, enzymatic activity, redox gradients) for triggered drug release. In this review, we comprehensively analyze these architectures with emphasis on their modular design strategies, stability improvements polyethylene glycol (PEG) functionalization, and multi-ligand targeting capabilities against cancer-specific biomarkers. In addition to therapeutic uses, these nanostructures also enable highly sensitive detection of circulating tumor DNA and exosomes using fluorescence resonance energy transfer (FRET) probes, electrochemiluminescence amplification circuits, SERS substrates, and cell variable region sensing technology. They also allow for real-time monitoring of dynamic intercellular interactions, overcoming the constraints of traditional sensing methods. This review systematically elaborates on the structural characteristics of DNA assemblies and summarizes the innovative applications of these nanostructures in multimodal detection, offering a more comprehensive perspective for early cancer diagnosis and precision treatment. Despite promising preclinical results, key translational challenges persist, including scalable manufacturing bottlenecks, immune compatibility optimization, and rigorous assessment of long-term nanotoxicity. Future integration with artificial intelligence-driven design tools may catalyze the development of next-generation theranostic nanodevices, ultimately bridging the gap between synthetic biology and clinical oncology.
DNA纳米技术的最新进展为解决精准医学中的关键挑战带来了前所未有的机遇,尤其是在靶向药物递送和生物医学成像方面。传统的纳米载体常常存在时空控制不佳、肿瘤蓄积不理想以及非特异性生物分布等问题。为了克服这些局限性,基于DNA工程的纳米结构——包括基于瓦片的组装体、折纸框架、球形核酸和刺激响应水凝胶——已成为可编程平台,能够动态响应肿瘤微环境线索(如pH值、酶活性、氧化还原梯度)以触发药物释放。在本综述中,我们全面分析了这些结构,重点关注其模块化设计策略、稳定性改进、聚乙二醇(PEG)功能化以及针对癌症特异性生物标志物的多配体靶向能力。除了治疗用途外,这些纳米结构还能够使用荧光共振能量转移(FRET)探针、电化学发光放大电路、表面增强拉曼光谱(SERS)底物和细胞可变区传感技术对循环肿瘤DNA和外泌体进行高度灵敏的检测。它们还允许对动态细胞间相互作用进行实时监测,克服了传统传感方法的局限性。本综述系统地阐述了DNA组装体的结构特征,并总结了这些纳米结构在多模态检测中的创新应用,为早期癌症诊断和精准治疗提供了更全面的视角。尽管临床前结果很有前景,但关键的转化挑战依然存在,包括可扩展制造瓶颈、免疫相容性优化以及对长期纳米毒性的严格评估。未来与人工智能驱动的设计工具相结合,可能会催化下一代治疗诊断纳米器件的开发,最终弥合合成生物学与临床肿瘤学之间的差距。
Cochrane Database Syst Rev. 2024-8-27
Front Cell Dev Biol. 2025-7-25
Acc Chem Res. 2024-7-16
Exp Hematol Oncol. 2025-5-19
Nanoscale. 2025-3-28
Angew Chem Int Ed Engl. 2025-1-27
J Nanobiotechnology. 2024-8-29
Nat Nanotechnol. 2024-11
Angew Chem Int Ed Engl. 2024-12-2
Nat Nanotechnol. 2024-11
Nat Nanotechnol. 2024-9