Department of Biostatistics & Bioinformatics, Moffitt Cancer Center, Tampa, FL, 33612, USA.
Department of Biostatistics, University of Kansas Medical Center, Kansas City, KS, 66160, USA.
Sci Rep. 2019 Oct 8;9(1):14421. doi: 10.1038/s41598-019-50936-0.
Cancer cell lines (CCLs) have been widely used to study of cancer. Recent studies have called into question the reliability of data collected on CCLs. Hence, we set out to determine CCLs that tend to be overly sensitive or resistant to a majority of drugs utilizing a nonlinear mixed-effects (NLME) modeling framework. Using drug response data collected in the Cancer Cell Line Encyclopedia (CCLE) and the Genomics of Drug Sensitivity in Cancer (GDSC), we determined the optimal functional form for each drug. Then, a NLME model was fit to the drug response data, with the estimated random effects used to determine sensitive or resistant CCLs. Out of the roughly 500 CCLs studies from the CCLE, we found 17 cell lines to be overly sensitive or resistant to the studied drugs. In the GDSC, we found 15 out of the 990 CCLs to be excessively sensitive or resistant. These results can inform researchers in the selection of CCLs to include in drug studies. Additionally, this study illustrates the need for assessing the dose-response functional form and the use of NLME models to achieve more stable estimates of drug response parameters.
癌细胞系 (CCLs) 已被广泛用于癌症研究。最近的研究对在 CCL 上收集的数据的可靠性提出了质疑。因此,我们着手确定利用非线性混合效应 (NLME) 建模框架对大多数药物过度敏感或耐药的 CCL。我们使用癌症细胞系百科全书 (CCLE) 和癌症药物敏感性基因组学 (GDSC) 中收集的药物反应数据,确定了每种药物的最佳函数形式。然后,将 NLME 模型拟合到药物反应数据中,使用估计的随机效应来确定敏感或耐药的 CCL。在来自 CCLE 的大约 500 个 CCL 研究中,我们发现 17 个细胞系对研究药物过度敏感或耐药。在 GDSC 中,我们发现 990 个 CCL 中有 15 个对药物过于敏感或耐药。这些结果可以为研究人员在选择 CCL 纳入药物研究时提供信息。此外,这项研究说明了评估剂量-反应功能形式和使用 NLME 模型以获得更稳定的药物反应参数估计值的必要性。