Suppr超能文献

细菌驱动的微游泳体中红/远红光可切换货物附着和释放。

Red/Far-Red Light Switchable Cargo Attachment and Release in Bacteria-Driven Microswimmers.

机构信息

Max Planck Institute of Polymer Research, Ackermannweg 10, 55128, Mainz, Germany.

Department of Systems and Synthetic Microbiology, Max Planck Institute for Terrestrial Microbiology & LOEWE Center for Synthetic Microbiology (SYNMIKRO), 35043, Marburg, Germany.

出版信息

Adv Healthc Mater. 2020 Jan;9(1):e1900956. doi: 10.1002/adhm.201900956. Epub 2019 Oct 9.

Abstract

In bacteria-driven microswimmers, i.e., bacteriabots, artificial cargos are attached to flagellated chemotactic bacteria for active delivery with potential applications in biomedical technology. Controlling when and where bacteria bind and release their cargo is a critical step for bacteriabot fabrication and efficient cargo delivery/deposition at the target site. Toward this goal, photoregulating the cargo integration and release in bacteriabots using red and far-red light, which are noninvasive stimuli with good tissue penetration and provide high spatiotemporal control, is proposed. In the bacteriabot design, the surfaces of E. coli and microsized model cargo particles with the proteins PhyB and PIF6, which bind to each other under red light and dissociate from each other under far-red light are functionalized. Consequently, the engineered bacteria adhere and transport the model cargo under red light and release it on-demand upon far-red light illumination due to the photoswitchable PhyB-PIF6 protein interaction. Overall, the proof-of-concept for red/far-red light switchable bacteriabots, which opens new possibilities in the photoregulation in biohybrid systems for bioengineering, targeted drug delivery, and lab-on-a-chip devices, is demonstrated.

摘要

在细菌驱动的微泳者(即细菌机器人)中,人工货物被附着在鞭毛趋化细菌上,以便进行主动输送,这在生物医学技术中有潜在的应用。控制细菌何时何地结合并释放其货物是制造细菌机器人和在目标部位高效输送/沉积货物的关键步骤。为此,提出了使用红光和远红光来调节细菌机器人中货物的整合和释放,这两种光是非侵入性刺激,具有良好的组织穿透性,可提供高时空控制。在细菌机器人的设计中,对大肠杆菌和具有 PhyB 和 PIF6 蛋白的微尺度模型货物颗粒的表面进行功能化,这两种蛋白在红光下相互结合,在远红光下相互解离。因此,由于光可切换的 PhyB-PIF6 蛋白相互作用,工程细菌在红光下粘附并运输模型货物,并在远红光照射下按需释放。总的来说,该研究证明了红光/远红光可切换细菌机器人的概念验证,这为生物混合系统中的光调控开辟了新的可能性,可用于生物工程、靶向药物输送和芯片实验室设备。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验