Plant Molecular Biology (Botany), Department Biology I, Ludwig-Maximilians-University München, 82152, Martinsried, Germany.
Plant Metabolism, Department Biology I, Ludwig-Maximilians-University München, 82152, Martinsried, Germany.
New Phytol. 2020 Feb;225(4):1715-1731. doi: 10.1111/nph.16246. Epub 2019 Nov 22.
Arabidopsis thaliana contains 13 fibrillins (FBNs), which are all localized to chloroplasts. FBN1 and FBN2 are involved in photoprotection of photosystem II, and FBN4 and FBN5 are thought to be involved in plastoquinone transport and biosynthesis, respectively. The functions of the other FBNs remain largely unknown. To gain insight into the function of FBN6, we performed coexpression and Western analyses, conducted fluorescence and transmission electron microscopy, stained reactive oxygen species (ROS), measured photosynthetic parameters and glutathione levels, and applied transcriptomics and metabolomics. Using coexpression analyses, FBN6 was identified as a photosynthesis-associated gene. FBN6 is localized to thylakoid and envelope membranes, and its knockout results in stunted plants. The delayed-growth phenotype cannot be attributed to altered basic photosynthesis parameters or a reduced CO assimilation rate. Under moderate light stress, primary leaves of fbn6 plants begin to bleach and contain enlarged plastoglobules. RNA sequencing and metabolomics analyses point to an alteration in sulfate reduction in fbn6. Indeed, glutathione content is higher in fbn6, which in turn confers cadmium tolerance of fbn6 seedlings. We conclude that loss of FBN6 leads to perturbation of ROS homeostasis. FBN6 enables plants to cope with moderate light stress and affects cadmium tolerance.
拟南芥含有 13 种纤维蛋白(FBNs),它们均定位于叶绿体中。FBN1 和 FBN2 参与光系统 II 的光保护,而 FBN4 和 FBN5 分别被认为参与质体醌的运输和生物合成。其他 FBN 的功能仍知之甚少。为了深入了解 FBN6 的功能,我们进行了共表达和 Western 分析,进行了荧光和透射电子显微镜观察,染色了活性氧(ROS),测量了光合作用参数和谷胱甘肽水平,并应用了转录组学和代谢组学。通过共表达分析,鉴定 FBN6 为与光合作用相关的基因。FBN6 定位于类囊体和包膜膜上,其敲除导致植物生长迟缓。生长迟缓的表型不能归因于基本光合作用参数的改变或 CO 同化率的降低。在适度的光胁迫下,fbn6 植株的初生叶片开始白化,并含有增大的质体小球。RNA 测序和代谢组学分析表明 fbn6 中硫酸盐还原发生了改变。事实上,fbn6 中的谷胱甘肽含量较高,这反过来又赋予了 fbn6 幼苗对镉的耐受性。我们得出结论,FBN6 的缺失导致 ROS 动态平衡失调。FBN6 使植物能够应对适度的光胁迫,并影响镉的耐受性。