Department of Biological Sciences, and.
Department of Biological Sciences, and
J Neurosci. 2019 Nov 20;39(47):9306-9315. doi: 10.1523/JNEUROSCI.1566-19.2019. Epub 2019 Oct 9.
Mounting evidence suggests numerous glutamatergic synapse subtypes exist in the brain, and that these subtypes are likely defined by unique molecular regulatory mechanisms. Recent work has identified substantial divergence of molecular composition between commonly studied Schaffer collateral synapses and perforant path-dentate gyrus (DG) synapses of the hippocampus. However, little is known about the molecular mechanisms that may confer unique properties to perforant path-DG synapses. Here we investigate whether the RhoGEF (Rho guanine-nucleotide exchange factor) protein Tiam1 plays a unique role in the regulation of glutamatergic synapses in dentate granule neurons using a combination of molecular, electrophysiological, and imaging approaches in rat entorhino-hippocampal slices of both sexes. We find that inhibition of Tiam1 function in dentate granule neurons reduces synaptic AMPA receptor function and causes dendritic spines to adopt an elongated filopodia-like morphology. We also find that Tiam1's support of perforant path-DG synapse function is dependent on its GEF domain and identify a potential role for the auto-inhibitory PH domain of Tiam1 in regulating Tiam1 function at these synapses. In marked contrast, reduced Tiam1 expression in CA1 pyramidal neurons produced no effect on glutamatergic synapse development. Together, these data identify a critical role for Tiam1 in the hippocampus and reveal a unique Tiam1-mediated molecular program of glutamatergic synapse regulation in dentate granule neurons. Several lines of evidence independently point to the molecular diversity of glutamatergic synapses in the brain. Rho guanine-nucleotide exchange factor (RhoGEF) proteins as powerful modulators of glutamatergic synapse function have also become increasingly appreciated in recent years. Here we investigate the synaptic regulatory role of the RhoGEF protein Tiam1, whose expression appears to be remarkably enriched in granule neurons of the dentate gyrus. We find that Tiam1 plays a critical role in the development of glutamatergic perforant path-dentate gyrus synapses, but not in commonly studied in Schaffer collateral-CA1 synapses. Together, these data reveal a unique RhoGEF-mediated molecular program of glutamatergic synapse regulation in dentate granule neurons.
越来越多的证据表明,大脑中存在多种谷氨酸能突触亚型,而这些亚型可能由独特的分子调节机制定义。最近的工作已经确定,在通常研究的沙费尔侧枝突触和海马的穿通路径-齿状回(DG)突触之间,分子组成存在明显的差异。然而,对于可能赋予穿通路径-DG 突触独特特性的分子机制知之甚少。在这里,我们使用两性大鼠内嗅-海马切片中的分子、电生理和成像方法,研究 RhoGEF(Rho 鸟苷酸交换因子)蛋白 Tiam1 是否在调节齿状颗粒神经元中的谷氨酸能突触中发挥独特作用。我们发现,抑制齿状颗粒神经元中的 Tiam1 功能会降低突触 AMPA 受体功能,并导致树突棘采用拉长的丝状伪足样形态。我们还发现,Tiam1 对穿通路径-DG 突触功能的支持依赖于其 GEF 结构域,并确定 Tiam1 的自动抑制 PH 结构域在调节这些突触中的 Tiam1 功能方面可能发挥作用。相比之下,减少 CA1 锥体神经元中的 Tiam1 表达对谷氨酸能突触发育没有影响。总的来说,这些数据确定了 Tiam1 在海马体中的关键作用,并揭示了 Tiam1 在齿状颗粒神经元中调节谷氨酸能突触的独特 Tiam1 介导的分子程序。有几条证据独立地指向大脑中谷氨酸能突触的分子多样性。Rho 鸟苷酸交换因子(RhoGEF)蛋白作为谷氨酸能突触功能的强大调节剂,近年来也越来越受到重视。在这里,我们研究了 RhoGEF 蛋白 Tiam1 的突触调节作用,其表达似乎在齿状回的颗粒神经元中明显丰富。我们发现,Tiam1 在谷氨酸能穿通路径-齿状回突触的发育中起着关键作用,但在通常研究的沙费尔侧枝-CA1 突触中则没有。总的来说,这些数据揭示了 Tiam1 在齿状颗粒神经元中调节谷氨酸能突触的独特 RhoGEF 介导的分子程序。