Suppr超能文献

癌症患者 F-(24)-4-氟谷氨酸的药代动力学评估。

Pharmacokinetic Assessment of F-(24)-4-Fluoroglutamine in Patients with Cancer.

机构信息

Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York.

Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York.

出版信息

J Nucl Med. 2020 Mar;61(3):357-366. doi: 10.2967/jnumed.119.229740. Epub 2019 Oct 10.

Abstract

F-(2S,4R)-4-fluoroglutamine (F-FGln) is an investigational PET radiotracer for imaging tumor glutamine flux and metabolism. The aim of this study was to investigate its pharmacokinetic properties in patients with cancer. Fifty lesions from 41 patients (21 men and 20 women, aged 54 ± 14 y) were analyzed. Thirty-minute dynamic PET scans were performed concurrently with a rapid intravenous bolus injection of 232 ± 82 MBq of F-FGln, followed by 2 static PET scans at 97 ± 14 and 190 ± 12 min after injection. Five patients also underwent a second F-FGln study 4-13 wk after initiation of therapy with glutaminase, dual TORC1/2, or programmed death-1 inhibitors. Blood samples were collected to determine plasma and metabolite fractions and to scale the image-derived input function. Regions of interest were manually drawn to calculate SUVs. Pharmacokinetic modeling with both reversible and irreversible 1- and 2-tissue-compartment models was performed to calculate the kinetic rate constants , , , and The analysis was repeated with truncated 30-min dynamic datasets. : Intratumor F-FGln uptake patterns demonstrated substantial heterogeneity in different lesion types. In most lesions, the reversible 2-tissue-compartment model was chosen as the most appropriate according to the Akaike information criterion. , a surrogate biomarker for F-FGln intracellular transport, was the kinetic rate constant that was most correlated both with SUV at 30 min (Spearman ρ = 0.71) and with SUV at 190 min (ρ = 0.51). Only was reproducible from truncated 30-min datasets (intraclass correlation coefficient, 0.96). , a surrogate biomarker for glutaminolysis rate, was relatively low in about 50% of lesions. Treatment with glutaminase inhibitor CB-839 substantially reduced the glutaminolysis rates as measured by F-FGln dynamic PET is a sensitive tool for studying glutamine transport and metabolism in human malignancies. Analysis of dynamic data facilitates better understanding of F-FGln pharmacokinetics and may be necessary for response assessment to targeted therapies that impact intracellular glutamine pool size and tumor glutaminolysis rates.

摘要

F-(2S,4R)-4-氟谷氨酸(F-FGln)是一种用于肿瘤谷氨酰胺通量和代谢成像的研究性正电子发射断层扫描(PET)示踪剂。本研究旨在研究其在癌症患者中的药代动力学特性。

对 41 例患者(21 例男性和 20 例女性,年龄 54±14 岁)的 50 个病灶进行了分析。在快速静脉推注 232±82MBq F-FGln 后进行 30 分钟的动态 PET 扫描,然后在注射后 97±14 和 190±12 分钟进行 2 次静态 PET 扫描。5 例患者还在开始接受谷氨酰胺酶、双重 TORC1/2 或程序性死亡-1 抑制剂治疗后 4-13 周进行了第二次 F-FGln 研究。采集血样以确定血浆和代谢物分数,并对图像衍生的输入函数进行标度。使用手动绘制感兴趣区域来计算 SUV。使用可逆和不可逆的 1 组织和 2 组织室模型进行药代动力学建模,以计算动力学速率常数 、 、 和 。使用截断的 30 分钟动态数据集重复分析。:不同病灶类型的肿瘤内 F-FGln 摄取模式表现出明显的异质性。根据赤池信息量准则,大多数病灶选择可逆的 2 组织室模型作为最合适的模型。 ,一种 F-FGln 细胞内转运的替代生物标志物,与 30 分钟时的 SUV(Spearman ρ=0.71)和 190 分钟时的 SUV(ρ=0.51)最相关。只有 可以从截断的 30 分钟数据集(组内相关系数,0.96)中重现。约 50%的病灶中,作为谷氨酰胺分解率替代生物标志物的 相对较低。用谷氨酰胺酶抑制剂 CB-839 治疗可显著降低 F-FGln 动态 PET 测量的谷氨酰胺分解率,是研究人类恶性肿瘤中谷氨酰胺转运和代谢的敏感工具。动态数据分析有助于更好地理解 F-FGln 的药代动力学特性,可能对评估影响细胞内谷氨酰胺池大小和肿瘤谷氨酰胺分解率的靶向治疗的反应是必要的。

相似文献

10
Comparative enzymology of (2S,4R)4-fluoroglutamine and (2S,4R)4-fluoroglutamate.(2S,4R)4-氟谷氨酸和(2S,4R)4-氟谷氨酸的比较酶学。
Comp Biochem Physiol B Biochem Mol Biol. 2012 Sep;163(1):108-20. doi: 10.1016/j.cbpb.2012.05.010. Epub 2012 May 19.

引用本文的文献

5
Cancer metabolic reprogramming and precision medicine-current perspective.癌症代谢重编程与精准医学——当前观点
Front Pharmacol. 2024 Oct 17;15:1450441. doi: 10.3389/fphar.2024.1450441. eCollection 2024.

本文引用的文献

8
Glutaminolysis: A Hallmark of Cancer Metabolism.谷氨酰胺分解:癌症代谢的一个标志
Annu Rev Biomed Eng. 2017 Jun 21;19:163-194. doi: 10.1146/annurev-bioeng-071516-044546. Epub 2017 Mar 8.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验