Department of Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatchewan, Canada.
Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri.
Am J Physiol Heart Circ Physiol. 2019 Nov 1;317(5):H1166-H1172. doi: 10.1152/ajpheart.00464.2019. Epub 2019 Oct 11.
Insulin modulates vasomotor tone through vasodilator and vasoconstrictor signaling pathways. The purpose of the present work was to determine whether insulin-stimulated vasoconstriction is a pathophysiological phenomenon that can result from a combination of persistent insulin signaling, suppressed phosphatidylinositol-3 kinase (PI3K) activation, and an ensuing relative increase in MAPK/endothelin-1 (ET-1) activity. First, we examined previously published work from our group where we assessed changes in lower-limb blood flow in response to an oral glucose tolerance test (endogenous insulin stimulation) in lean and obese subjects. The new analyses showed that the peak rise in vascular resistance during the postprandial state was greater in obese compared with lean subjects. We next extended on these findings by demonstrating that insulin-induced vasoconstriction in isolated resistance arteries from obese subjects was attenuated with ET-1 receptor antagonism, thus implicating ET-1 signaling in this constriction response. Last, we examined in isolated resistance arteries from pigs the dual roles of persistent insulin signaling and blunted PI3K activation in modulating vasomotor responses to insulin. We found that prolonged insulin stimulation did not alter vasomotor responses to insulin when insulin-signaling pathways remained unrestricted. However, prolonged insulinization along with pharmacological suppression of PI3K activity resulted in insulin-induced vasoconstriction, rather than vasodilation. Notably, such aberrant vascular response was rescued with either MAPK inhibition or ET-1 receptor antagonism. In summary, we demonstrate that insulin-induced vasoconstriction is a pathophysiological phenomenon that can be recapitulated when sustained insulin signaling is coupled with depressed PI3K activation and the concomitant relative increase in MAPK/ET-1 activity. This study reveals that insulin-induced vasoconstriction is a pathophysiological phenomenon. We also provide evidence that in the setting of persistent insulin signaling, impaired phosphatidylinositol-3 kinase activation appears to be a requisite feature precipitating MAPK/endothelin 1-dependent insulin-induced vasoconstriction.
胰岛素通过血管舒张和收缩信号通路调节血管张力。本研究旨在确定胰岛素刺激的血管收缩是否是一种病理生理现象,这种现象可能是由于持续的胰岛素信号、抑制磷脂酰肌醇-3 激酶(PI3K)激活以及随之而来的 MAPK/内皮素-1(ET-1)活性相对增加的组合所致。首先,我们检查了我们小组之前发表的工作,其中我们评估了瘦素和肥胖受试者口服葡萄糖耐量试验(内源性胰岛素刺激)对下肢血流的变化。新的分析表明,餐后状态下血管阻力的峰值升高在肥胖者中大于瘦素者。接下来,我们通过证明肥胖者离体阻力动脉中胰岛素诱导的血管收缩可以被 ET-1 受体拮抗剂减弱来扩展这些发现,从而表明 ET-1 信号在这种收缩反应中起作用。最后,我们在猪的离体阻力动脉中检查了持续的胰岛素信号和 PI3K 激活的减弱在调节胰岛素对血管舒缩反应中的双重作用。我们发现,当胰岛素信号通路不受限制时,延长胰岛素刺激不会改变对胰岛素的血管舒缩反应。然而,延长胰岛素化并结合 PI3K 活性的药理学抑制导致胰岛素诱导的血管收缩,而不是血管舒张。值得注意的是,这种异常的血管反应可以通过 MAPK 抑制或 ET-1 受体拮抗剂来挽救。总之,我们证明胰岛素诱导的血管收缩是一种病理生理现象,当持续的胰岛素信号与 PI3K 激活的抑制以及 MAPK/ET-1 活性的相对增加相结合时,可以再现这种现象。这项研究揭示了胰岛素诱导的血管收缩是一种病理生理现象。我们还提供了证据表明,在持续的胰岛素信号的情况下,PI3K 激活受损似乎是引发 MAPK/内皮素 1 依赖性胰岛素诱导的血管收缩的必需特征。