Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland.
Clinical and Integrative Diabetes and Obesity Integrated Review Group, Center for Scientific Review, National Institutes of Health, Bethesda, Maryland.
Am J Physiol Endocrinol Metab. 2020 Sep 1;319(3):E629-E646. doi: 10.1152/ajpendo.00247.2020. Epub 2020 Aug 10.
Previously, we have used mathematical modeling to gain mechanistic insights into insulin-stimulated glucose uptake. Phosphatidylinositol 3-kinase (PI3K)-dependent insulin signaling required for metabolic actions of insulin also regulates endothelium-dependent production of the vasodilator nitric oxide (NO). Vasodilation increases blood flow that augments direct metabolic actions of insulin in skeletal muscle. This is counterbalanced by mitogen-activated protein kinase (MAPK)-dependent insulin signaling in endothelium that promotes secretion of the vasoconstrictor endothelin-1 (ET-1). In the present study, we extended our model of metabolic insulin signaling into a dynamic model of insulin signaling in vascular endothelium that explicitly represents opposing PI3K/NO and MAPK/ET-1 pathways. Novel NO and ET-1 subsystems were developed using published and new experimental data to generate model structures/parameters. The signal-response relationships of our model with respect to insulin-stimulated NO production, ET-1 secretion, and resultant vascular tone, agree with published experimental data, independent of those used for model development. Simulations of pathological stimuli directly impairing only insulin-stimulated PI3K/Akt activity predict altered dynamics of NO and ET-1 consistent with endothelial dysfunction in insulin-resistant states. Indeed, modeling pathway-selective impairment of PI3K/Akt pathways consistent with insulin resistance caused by glucotoxicity, lipotoxicity, or inflammation predict diminished NO production and increased ET-1 secretion characteristic of diabetes and endothelial dysfunction. We conclude that our mathematical model of insulin signaling in vascular endothelium supports the hypothesis that pathway-selective insulin resistance accounts, in part, for relationships between insulin resistance and endothelial dysfunction. This may be relevant for developing novel approaches for the treatment of diabetes and its cardiovascular complications.
先前,我们运用数学建模来深入了解胰岛素刺激葡萄糖摄取的机制。胰岛素代谢作用所需的磷脂酰肌醇 3-激酶(PI3K)-依赖性胰岛素信号,也调节内皮细胞依赖性血管舒张因子一氧化氮(NO)的产生。血管舒张增加血流量,从而增强胰岛素对骨骼肌的直接代谢作用。这种作用被内皮细胞中丝裂原活化蛋白激酶(MAPK)-依赖性胰岛素信号所抵消,后者促进血管收缩因子内皮素-1(ET-1)的分泌。在本研究中,我们将代谢胰岛素信号的模型扩展为血管内皮胰岛素信号的动态模型,该模型明确表示了 PI3K/NO 和 MAPK/ET-1 通路的拮抗作用。使用已发表和新的实验数据开发了新的 NO 和 ET-1 子系统,以生成模型结构/参数。我们的模型中胰岛素刺激的 NO 产生、ET-1 分泌以及由此产生的血管张力的信号-反应关系与独立于模型开发而使用的已发表的实验数据一致。直接损害仅胰岛素刺激的 PI3K/Akt 活性的病理刺激的模拟预测了 NO 和 ET-1 的动力学改变,与胰岛素抵抗状态下的内皮功能障碍一致。实际上,建模与葡萄糖毒性、脂肪毒性或炎症引起的胰岛素抵抗一致的 PI3K/Akt 通路的选择性损伤,预测了糖尿病和内皮功能障碍的特征性 NO 产生减少和 ET-1 分泌增加。我们得出结论,我们的血管内皮胰岛素信号的数学模型支持这样的假设,即通路选择性胰岛素抵抗部分解释了胰岛素抵抗与内皮功能障碍之间的关系。这对于开发治疗糖尿病及其心血管并发症的新方法可能具有重要意义。