Suppr超能文献

长期可塑性对神经网络信息传递的影响。

Impact of Long Term Plasticity on Information Transmission Over Neuronal Networks.

出版信息

IEEE Trans Nanobioscience. 2020 Jan;19(1):25-34. doi: 10.1109/TNB.2019.2946124. Epub 2019 Oct 7.

Abstract

The realization of bio-compatible nanomachines would pave the way for developing novel diagnosis and treatment techniques for the dysfunctions of intra-body nanonetworks and revolutionize the traditional healthcare methodologies making them less invasive and more efficient. The network of these nanomachines is aimed to be used for treating neuronal diseases such as developing an implant that bridges over the injured spinal cord to regain its normal functionality. Thus, nanoscale communication paradigms are needed to be investigated to facilitate communication between nanomachines. Communication among neurons is one of the most promising nanoscale communication paradigm, which necessitates the thorough communication theoretical analysis of information transmission among neurons. The information flow in neuro-spike communication channel is regulated by the ability of neurons to change synaptic strengths over time, i.e. synaptic plasticity. Thus, the performance evaluation of the nervous nanonetwork is incomplete without considering the influence of synaptic plasticity. In this paper, we focus on information transmission among hippocampal pyramidal neurons and provide a comprehensive channel model for MISO neuro-spike communication, which includes axonal transmission, vesicle release process, synaptic communication and spike generation. In this channel, the spike timing dependent plasticity (STDP) model is used to cover both synaptic depressiofan and potentiation depending on the temporal correlation between spikes generated by input and output neurons. Since synaptic strength changes depending on different physiological factors such as spiking rate of presynaptic neurons, number of correlated presynaptic neurons and the correlation factor among them, we simulate this model with correlated inputs and analyze the evolution of synaptic weights over time. Moreover, we calculate average mutual information between input and output of the channel and find the impact of plasticity and correlation among inputs on the information transmission. The simulation results reveal the impact of different physiological factors related to either presynaptic or postsynaptic neurons on the performance of MISO neuro-spike communication. Moreover, they provide guidelines for selecting the system parameters in a bio-inspired neuronal network according to the requirements of different applications.

摘要

生物兼容纳米机器的实现将为开发体内纳米网络功能障碍的新型诊断和治疗技术铺平道路,并彻底改变传统的医疗保健方法,使其侵入性更小,效率更高。这些纳米机器的网络旨在用于治疗神经疾病,例如开发一种植入物来桥接受伤的脊髓以恢复其正常功能。因此,需要研究纳米级通信范例来促进纳米机器之间的通信。神经元之间的通信是最有前途的纳米级通信范例之一,这需要对神经元之间的信息传输进行彻底的通信理论分析。神经尖峰通信信道中的信息流受到神经元随时间改变突触强度的能力的调节,即突触可塑性。因此,如果不考虑突触可塑性的影响,就无法完成神经纳米网络的性能评估。在本文中,我们专注于海马锥体神经元之间的信息传输,并为 MISO 神经尖峰通信提供了全面的信道模型,该模型包括轴突传输、囊泡释放过程、突触通信和尖峰生成。在这个信道中,使用尖峰时间依赖可塑性(STDP)模型来覆盖突触抑制和增强,这取决于输入和输出神经元产生的尖峰之间的时间相关性。由于突触强度取决于不同的生理因素,例如突触前神经元的放电率、相关的突触前神经元数量以及它们之间的相关因素,我们使用相关输入来模拟这个模型,并分析随时间变化的突触权重的演变。此外,我们计算信道输入和输出之间的平均互信息,并找出可塑性和输入之间的相关性对信息传输的影响。仿真结果揭示了与突触前或突触后神经元相关的不同生理因素对 MISO 神经尖峰通信性能的影响。此外,它们为根据不同应用的要求在生物启发的神经元网络中选择系统参数提供了指导。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验