Zhu Xiaofeng, Suk Heung-Il, Shen Dinggang
Guangxi Key Lab of Multi-source Information Mining and Security, Guangxi Normal University, Guilin 541004, Guangxi, People's Republic of China.
Institute of Natural and Mathematical Sciences, Massey University, Auckland 0745, New Zealand.
World Wide Web. 2019 Mar;22(2):673-688. doi: 10.1007/s11280-018-0637-3. Epub 2018 Sep 17.
The neuroimaging genetic study usually needs to deal with high dimensionality of both brain imaging data and genetic data, so that often resulting in the issue of curse of dimensionality. In this paper, we propose a group sparse reduced rank regression model to take the relations of both the phenotypes and the genotypes for the neuroimaging genetic study. Specifically, we propose designing a graph sparsity constraint as well as a reduced rank constraint to simultaneously conduct subspace learning and feature selection. The group sparsity constraint conducts feature selection to identify genotypes highly related to neuroimaging data, while the reduced rank constraint considers the relations among neuroimaging data to conduct subspace learning in the feature selection model. Furthermore, an alternative optimization algorithm is proposed to solve the resulting objective function and is proved to achieve fast convergence. Experimental results on the Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset showed that the proposed method has superiority on predicting the phenotype data by the genotype data, than the alternative methods under comparison.
神经影像学基因研究通常需要处理脑成像数据和基因数据的高维度问题,从而常常导致维度灾难问题。在本文中,我们提出了一种组稀疏降秩回归模型,用于在神经影像学基因研究中考虑表型和基因型之间的关系。具体而言,我们提出设计一个图稀疏约束以及一个降秩约束,以同时进行子空间学习和特征选择。组稀疏约束进行特征选择,以识别与神经成像数据高度相关的基因型,而降秩约束考虑神经成像数据之间的关系,以便在特征选择模型中进行子空间学习。此外,还提出了一种交替优化算法来求解由此产生的目标函数,并证明该算法能实现快速收敛。在阿尔茨海默病神经影像学倡议(ADNI)数据集上的实验结果表明,与所比较的其他方法相比,所提出的方法在利用基因型数据预测表型数据方面具有优越性。