Suppr超能文献

用于神经影像学基因研究的组稀疏降秩回归

Group sparse reduced rank regression for neuroimaging genetic study.

作者信息

Zhu Xiaofeng, Suk Heung-Il, Shen Dinggang

机构信息

Guangxi Key Lab of Multi-source Information Mining and Security, Guangxi Normal University, Guilin 541004, Guangxi, People's Republic of China.

Institute of Natural and Mathematical Sciences, Massey University, Auckland 0745, New Zealand.

出版信息

World Wide Web. 2019 Mar;22(2):673-688. doi: 10.1007/s11280-018-0637-3. Epub 2018 Sep 17.

Abstract

The neuroimaging genetic study usually needs to deal with high dimensionality of both brain imaging data and genetic data, so that often resulting in the issue of curse of dimensionality. In this paper, we propose a group sparse reduced rank regression model to take the relations of both the phenotypes and the genotypes for the neuroimaging genetic study. Specifically, we propose designing a graph sparsity constraint as well as a reduced rank constraint to simultaneously conduct subspace learning and feature selection. The group sparsity constraint conducts feature selection to identify genotypes highly related to neuroimaging data, while the reduced rank constraint considers the relations among neuroimaging data to conduct subspace learning in the feature selection model. Furthermore, an alternative optimization algorithm is proposed to solve the resulting objective function and is proved to achieve fast convergence. Experimental results on the Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset showed that the proposed method has superiority on predicting the phenotype data by the genotype data, than the alternative methods under comparison.

摘要

神经影像学基因研究通常需要处理脑成像数据和基因数据的高维度问题,从而常常导致维度灾难问题。在本文中,我们提出了一种组稀疏降秩回归模型,用于在神经影像学基因研究中考虑表型和基因型之间的关系。具体而言,我们提出设计一个图稀疏约束以及一个降秩约束,以同时进行子空间学习和特征选择。组稀疏约束进行特征选择,以识别与神经成像数据高度相关的基因型,而降秩约束考虑神经成像数据之间的关系,以便在特征选择模型中进行子空间学习。此外,还提出了一种交替优化算法来求解由此产生的目标函数,并证明该算法能实现快速收敛。在阿尔茨海默病神经影像学倡议(ADNI)数据集上的实验结果表明,与所比较的其他方法相比,所提出的方法在利用基因型数据预测表型数据方面具有优越性。

相似文献

1
Group sparse reduced rank regression for neuroimaging genetic study.
World Wide Web. 2019 Mar;22(2):673-688. doi: 10.1007/s11280-018-0637-3. Epub 2018 Sep 17.
2
Low-Rank Graph-Regularized Structured Sparse Regression for Identifying Genetic Biomarkers.
IEEE Trans Big Data. 2017 Oct-Dec;3(4):405-414. doi: 10.1109/TBDATA.2017.2735991. Epub 2017 Aug 4.
3
A Robust Reduced Rank Graph Regression Method for Neuroimaging Genetic Analysis.
Neuroinformatics. 2018 Oct;16(3-4):351-361. doi: 10.1007/s12021-018-9382-0.
4
Subspace Sparse Discriminative Feature Selection.
IEEE Trans Cybern. 2022 Jun;52(6):4221-4233. doi: 10.1109/TCYB.2020.3025205. Epub 2022 Jun 16.
5
Structured Sparse Low-Rank Regression Model for Brain-Wide and Genome-Wide Associations.
Med Image Comput Comput Assist Interv. 2016 Oct;9900:344-352. doi: 10.1007/978-3-319-46720-7_40. Epub 2016 Oct 2.
6
Predicting Alzheimer's Disease Cognitive Assessment via Robust Low-Rank Structured Sparse Model.
IJCAI (U S). 2017 Aug;2017:3880-3886. doi: 10.24963/ijcai.2017/542.
7
Incomplete-Data Oriented Multiview Dimension Reduction via Sparse Low-Rank Representation.
IEEE Trans Neural Netw Learn Syst. 2018 Dec;29(12):6276-6291. doi: 10.1109/TNNLS.2018.2828699. Epub 2018 May 17.
8
Robust and Sparse Principal Component Analysis With Adaptive Loss Minimization for Feature Selection.
IEEE Trans Neural Netw Learn Syst. 2024 Mar;35(3):3601-3614. doi: 10.1109/TNNLS.2022.3194896. Epub 2024 Feb 29.
9
Region-of-Interest based sparse feature learning method for Alzheimer's disease identification.
Comput Methods Programs Biomed. 2020 Apr;187:105290. doi: 10.1016/j.cmpb.2019.105290. Epub 2019 Dec 24.

引用本文的文献

1
Machine learning-based personalized composite score dissects risk and protective factors for cognitive and motor function in older participants.
Front Aging Neurosci. 2024 Oct 15;16:1447944. doi: 10.3389/fnagi.2024.1447944. eCollection 2024.

本文引用的文献

1
Unsupervised Deep Hashing with Similarity-Adaptive and Discrete Optimization.
IEEE Trans Pattern Anal Mach Intell. 2018 Dec;40(12):3034-3044. doi: 10.1109/TPAMI.2018.2789887. Epub 2018 Jan 5.
2
Low-Rank Graph-Regularized Structured Sparse Regression for Identifying Genetic Biomarkers.
IEEE Trans Big Data. 2017 Oct-Dec;3(4):405-414. doi: 10.1109/TBDATA.2017.2735991. Epub 2017 Aug 4.
3
Efficient kNN Classification With Different Numbers of Nearest Neighbors.
IEEE Trans Neural Netw Learn Syst. 2018 May;29(5):1774-1785. doi: 10.1109/TNNLS.2017.2673241. Epub 2017 Apr 12.
4
Robust Joint Graph Sparse Coding for Unsupervised Spectral Feature Selection.
IEEE Trans Neural Netw Learn Syst. 2017 Jun;28(6):1263-1275. doi: 10.1109/TNNLS.2016.2521602. Epub 2016 Feb 29.
5
Probabilistic Modeling of Imaging, Genetics and Diagnosis.
IEEE Trans Med Imaging. 2016 Jul;35(7):1765-79. doi: 10.1109/TMI.2016.2527784. Epub 2016 Feb 11.
6
Deformable MR Prostate Segmentation via Deep Feature Learning and Sparse Patch Matching.
IEEE Trans Med Imaging. 2016 Apr;35(4):1077-89. doi: 10.1109/TMI.2015.2508280. Epub 2015 Dec 11.
7
A novel relational regularization feature selection method for joint regression and classification in AD diagnosis.
Med Image Anal. 2017 May;38:205-214. doi: 10.1016/j.media.2015.10.008. Epub 2015 Nov 10.
8
Subspace Regularized Sparse Multitask Learning for Multiclass Neurodegenerative Disease Identification.
IEEE Trans Biomed Eng. 2016 Mar;63(3):607-18. doi: 10.1109/TBME.2015.2466616. Epub 2015 Aug 11.
9
FVGWAS: Fast voxelwise genome wide association analysis of large-scale imaging genetic data.
Neuroimage. 2015 Sep;118:613-27. doi: 10.1016/j.neuroimage.2015.05.043. Epub 2015 May 27.
10
Block-Row Sparse Multiview Multilabel Learning for Image Classification.
IEEE Trans Cybern. 2016 Feb;46(2):450-61. doi: 10.1109/TCYB.2015.2403356. Epub 2015 Feb 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验