Suppr超能文献

一种稳健的降秩图回归方法在神经影像学遗传分析中的应用。

A Robust Reduced Rank Graph Regression Method for Neuroimaging Genetic Analysis.

机构信息

Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.

Peking Union Medical College Hospital, Beijing, 100730, China.

出版信息

Neuroinformatics. 2018 Oct;16(3-4):351-361. doi: 10.1007/s12021-018-9382-0.

Abstract

To characterize associations between genetic and neuroimaging data, a variety of analytic methods have been proposed in neuroimaging genetic studies. These methods have achieved promising performance by taking into account inherent correlation in either the neuroimaging data or the genetic data alone. In this study, we propose a novel robust reduced rank graph regression based method in a linear regression framework by considering correlations inherent in neuroimaging data and genetic data jointly. Particularly, we model the association analysis problem in a reduced rank regression framework with the genetic data as a feature matrix and the neuroimaging data as a response matrix by jointly considering correlations among the neuroimaging data as well as correlations between the genetic data and the neuroimaging data. A new graph representation of genetic data is adopted to exploit their inherent correlations, in addition to robust loss functions for both the regression and the data representation tasks, and a square-root-operator applied to the robust loss functions for achieving adaptive sample weighting. The resulting optimization problem is solved using an iterative optimization method whose convergence has been theoretically proved. Experimental results on the Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset have demonstrated that our method could achieve competitive performance in terms of regression performance between brain structural measures and the Single Nucleotide Polymorphisms (SNPs), compared with state-of-the-art alternative methods.

摘要

为了刻画遗传和神经影像学数据之间的关联,神经影像学遗传学研究中提出了多种分析方法。这些方法通过考虑神经影像学数据或遗传数据本身固有的相关性,取得了有希望的性能。在这项研究中,我们提出了一种新的基于稳健降秩图回归的方法,该方法在线性回归框架中,同时考虑了神经影像学数据和遗传数据中固有的相关性。特别地,我们通过同时考虑神经影像学数据之间的相关性以及遗传数据和神经影像学数据之间的相关性,将关联分析问题建模为降秩回归框架中的问题,其中遗传数据作为特征矩阵,神经影像学数据作为响应矩阵。采用了一种新的遗传数据的图表示方法来利用它们固有的相关性,除了用于回归和数据表示任务的稳健损失函数之外,还采用了平方根算子应用于稳健损失函数以实现自适应样本加权。使用已经从理论上证明了收敛性的迭代优化方法来解决由此产生的优化问题。在阿尔茨海默病神经影像学倡议 (ADNI) 数据集上的实验结果表明,与最先进的替代方法相比,我们的方法在大脑结构测量值和单核苷酸多态性 (SNP) 之间的回归性能方面具有竞争力。

相似文献

1
A Robust Reduced Rank Graph Regression Method for Neuroimaging Genetic Analysis.
Neuroinformatics. 2018 Oct;16(3-4):351-361. doi: 10.1007/s12021-018-9382-0.
2
Alzheimer's disease diagnosis framework from incomplete multimodal data using convolutional neural networks.
J Biomed Inform. 2021 Sep;121:103863. doi: 10.1016/j.jbi.2021.103863. Epub 2021 Jul 3.
3
Discriminative self-representation sparse regression for neuroimaging-based alzheimer's disease diagnosis.
Brain Imaging Behav. 2019 Feb;13(1):27-40. doi: 10.1007/s11682-017-9731-x.
4
Brain-Wide Genome-Wide Association Study for Alzheimer's Disease via Joint Projection Learning and Sparse Regression Model.
IEEE Trans Biomed Eng. 2019 Jan;66(1):165-175. doi: 10.1109/TBME.2018.2824725. Epub 2018 Apr 9.
6
A multi-task SCCA method for brain imaging genetics and its application in neurodegenerative diseases.
Comput Methods Programs Biomed. 2023 Apr;232:107450. doi: 10.1016/j.cmpb.2023.107450. Epub 2023 Mar 3.
7
Identifying Candidate Genetic Associations with MRI-Derived AD-Related ROI via Tree-Guided Sparse Learning.
IEEE/ACM Trans Comput Biol Bioinform. 2019 Nov-Dec;16(6):1986-1996. doi: 10.1109/TCBB.2018.2833487. Epub 2018 May 7.
8
9
Generalized fused group lasso regularized multi-task feature learning for predicting cognitive outcomes in Alzheimers disease.
Comput Methods Programs Biomed. 2018 Aug;162:19-45. doi: 10.1016/j.cmpb.2018.04.028. Epub 2018 May 3.
10
Detecting genetic associations with brain imaging phenotypes in Alzheimer's disease via a novel structured KCCA approach.
J Bioinform Comput Biol. 2021 Aug;19(4):2150012. doi: 10.1142/S0219720021500128. Epub 2021 May 4.

引用本文的文献

1
LARGE-SCALE MULTIVARIATE SPARSE REGRESSION WITH APPLICATIONS TO UK BIOBANK.
Ann Appl Stat. 2022 Sep;16(3):1891-1918. doi: 10.1214/21-aoas1575. Epub 2022 Jul 19.
2
Brain Imaging Genomics: Integrated Analysis and Machine Learning.
Proc IEEE Inst Electr Electron Eng. 2020 Jan;108(1):125-162. doi: 10.1109/JPROC.2019.2947272. Epub 2019 Oct 29.

本文引用的文献

1
Feature selection by optimizing a lower bound of conditional mutual information.
Inf Sci (N Y). 2017 Dec;418-419:652-667. doi: 10.1016/j.ins.2017.08.036. Epub 2017 Aug 9.
2
Low-Rank Graph-Regularized Structured Sparse Regression for Identifying Genetic Biomarkers.
IEEE Trans Big Data. 2017 Oct-Dec;3(4):405-414. doi: 10.1109/TBDATA.2017.2735991. Epub 2017 Aug 4.
3
Brain Network Alterations in Alzheimer's Disease Identified by Early-Phase PIB-PET.
Contrast Media Mol Imaging. 2018 Jan 8;2018:6830105. doi: 10.1155/2018/6830105. eCollection 2018.
4
A novel SCCA approach via truncated ℓ1-norm and truncated group lasso for brain imaging genetics.
Bioinformatics. 2018 Jan 15;34(2):278-285. doi: 10.1093/bioinformatics/btx594.
5
FGWAS: Functional genome wide association analysis.
Neuroimage. 2017 Oct 1;159:107-121. doi: 10.1016/j.neuroimage.2017.07.030. Epub 2017 Jul 20.
6
A Bayesian group sparse multi-task regression model for imaging genetics.
Bioinformatics. 2017 Aug 15;33(16):2513-2522. doi: 10.1093/bioinformatics/btx215.
7
Bayesian longitudinal low-rank regression models for imaging genetic data from longitudinal studies.
Neuroimage. 2017 Apr 1;149:305-322. doi: 10.1016/j.neuroimage.2017.01.052. Epub 2017 Jan 29.
9
Robust Joint Graph Sparse Coding for Unsupervised Spectral Feature Selection.
IEEE Trans Neural Netw Learn Syst. 2017 Jun;28(6):1263-1275. doi: 10.1109/TNNLS.2016.2521602. Epub 2016 Feb 29.
10
Combination of dynamic (11)C-PIB PET and structural MRI improves diagnosis of Alzheimer's disease.
Psychiatry Res. 2015 Aug 30;233(2):131-40. doi: 10.1016/j.pscychresns.2015.05.014. Epub 2015 May 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验